These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27009000)

  • 1. A COMPARISON OF DRAGON KELP, EUALARIA FISTULOSA, (PHAEOPHYCEAE) FECUNDITY IN URCHIN BARRENS AND NEARBY KELP BEDS THROUGHOUT THE ALEUTIAN ARCHIPELAGO(1).
    Edwards MS; Konar B
    J Phycol; 2012 Aug; 48(4):897-901. PubMed ID: 27009000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trophic downgrading reduces spatial variability on rocky reefs.
    Edwards MS; Konar B
    Sci Rep; 2020 Oct; 10(1):18079. PubMed ID: 33093542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.
    Ling SD; Kriegisch N; Woolley B; Reeves SE
    Ecology; 2019 Feb; 100(2):e02577. PubMed ID: 30707451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine deforestation leads to widespread loss of ecosystem function.
    Edwards M; Konar B; Kim JH; Gabara S; Sullaway G; McHugh T; Spector M; Small S
    PLoS One; 2020; 15(3):e0226173. PubMed ID: 32130220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drift-kelp suppresses foraging movement of overgrazing sea urchins.
    Kriegisch N; Reeves SE; Flukes EB; Johnson CR; Ling SD
    Oecologia; 2019 Jul; 190(3):665-677. PubMed ID: 31250188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kelp and sea urchin settlement mediated by biotic interactions with benthic coralline algal species.
    Twist BA; Mazel F; Zaklan Duff S; Lemay MA; Pearce CM; Martone PT
    J Phycol; 2024 Apr; 60(2):363-379. PubMed ID: 38147464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago.
    Reisewitz SE; Estes JA; Simenstad CA
    Oecologia; 2006 Jan; 146(4):623-31. PubMed ID: 16193296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the efficacy of sea urchin exclusion methods for restoring kelp.
    Sharma R; Swearer SE; Morris RL; Strain EMA
    Mar Environ Res; 2021 Aug; 170():105439. PubMed ID: 34365122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance.
    Murie KA; Bourdeau PE
    Sci Rep; 2021 May; 11(1):11313. PubMed ID: 34059741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-Shift Dynamics of Sea Urchin Overgrazing on Nutrified Reefs.
    Kriegisch N; Reeves S; Johnson CR; Ling SD
    PLoS One; 2016; 11(12):e0168333. PubMed ID: 28030596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins.
    Filbee-Dexter K; Scheibling RE
    Ecology; 2017 Jan; 98(1):253-264. PubMed ID: 28052391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-dependence and seasonal variation in reproductive output and sporophyte production in the kelp, Ecklonia radiata.
    Tatsumi M; Mabin CJT; Layton C; Shelamoff V; Cameron MJ; Johnson CR; Wright JT
    J Phycol; 2022 Feb; 58(1):92-104. PubMed ID: 34612512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens.
    Rogers-Bennett L; Catton CA
    Sci Rep; 2019 Oct; 9(1):15050. PubMed ID: 31636286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of removing sea urchins (Strongylocentrotus droebachiensis): Stability of the barren state and succession of kelp forest recovery in the east Atlantic.
    Leinaas HP; Christie H
    Oecologia; 1996 Mar; 105(4):524-536. PubMed ID: 28307146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia.
    Carnell PE; Keough MJ
    Sci Rep; 2020 Jul; 10(1):11272. PubMed ID: 32647344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A century of canopy kelp persistence and recovery in the Gulf of Alaska.
    Hollarsmith JA; Cornett JC; Evenson E; Tugaw A
    Ann Bot; 2024 Mar; 133(1):105-116. PubMed ID: 37832150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Canopy-forming seaweeds in urchin-dominated systems in eastern Canada: structuring forces or simple prey for keystone grazers?
    Blain C; Gagnon P
    PLoS One; 2014; 9(5):e98204. PubMed ID: 24859311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Rock Type and Food Availability on Bioerosion by the Purple Sea Urchin, Strongylocentrotus purpuratus.
    Troha LU; Narvaez CA; Russell MP
    Integr Comp Biol; 2024 Jun; ():. PubMed ID: 38830805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia.
    Scheibling R
    Oecologia; 1986 Jan; 68(2):186-198. PubMed ID: 28310126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal inhibitory effects of marine plants on sea urchins: structuring communities the algal way.
    Konar B
    Oecologia; 2000 Oct; 125(2):208-217. PubMed ID: 24595832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.