These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27009200)

  • 1. Differences in environmental stress response among yeasts is consistent with species-specific lifestyles.
    Brion C; Pflieger D; Souali-Crespo S; Friedrich A; Schacherer J
    Mol Biol Cell; 2016 May; 27(10):1694-705. PubMed ID: 27009200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-talks of sensory transcription networks in response to various environmental stresses.
    Chen T; Li F; Chen BS
    Interdiscip Sci; 2009 Mar; 1(1):46-54. PubMed ID: 20640818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of intraspecific transcriptomic landscapes in yeasts.
    Brion C; Pflieger D; Friedrich A; Schacherer J
    Nucleic Acids Res; 2015 May; 43(9):4558-68. PubMed ID: 25897111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae.
    Kuroda K; Ueda M
    J Biosci Bioeng; 2017 Dec; 124(6):599-605. PubMed ID: 28712705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional conservation of yeast mtTFB despite extensive sequence divergence.
    Carrodeguas JA; Yun S; Shadel GS; Clayton DA; Bogenhagen DF
    Gene Expr; 1996; 6(4):219-30. PubMed ID: 9196077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intersecting transcription networks constrain gene regulatory evolution.
    Sorrells TR; Booth LN; Tuch BB; Johnson AD
    Nature; 2015 Jul; 523(7560):361-5. PubMed ID: 26153861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species.
    Jung PP; Sigwalt A; Ohnuki S; de Montigny J; Ohya Y; Schacherer J
    G3 (Bethesda); 2016 Apr; 6(4):1063-71. PubMed ID: 26888866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Yap family and its role in stress response.
    Rodrigues-Pousada C; Menezes RA; Pimentel C
    Yeast; 2010 May; 27(5):245-58. PubMed ID: 20148391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments.
    Lopandic K
    Yeast; 2018 Jan; 35(1):21-38. PubMed ID: 29131388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.
    Zheng YL; Wang SA
    PLoS One; 2015; 10(8):e0133889. PubMed ID: 26244846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergence of transcription factor binding sites across related yeast species.
    Borneman AR; Gianoulis TA; Zhang ZD; Yu H; Rozowsky J; Seringhaus MR; Wang LY; Gerstein M; Snyder M
    Science; 2007 Aug; 317(5839):815-9. PubMed ID: 17690298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-stress resistance in Saccharomyces cerevisiae yeast--new insight into an old phenomenon.
    Święciło A
    Cell Stress Chaperones; 2016 Mar; 21(2):187-200. PubMed ID: 26825800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription.
    de Nadal E; Posas F
    FEBS J; 2015 Sep; 282(17):3275-85. PubMed ID: 25996081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal performance and stress: responses and tolerance limits at different levels of biological organisation.
    Kassahn KS; Crozier RH; Pörtner HO; Caley MJ
    Biol Rev Camb Philos Soc; 2009 May; 84(2):277-92. PubMed ID: 19344429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis.
    Bao WG; Guiard B; Fang ZA; Donnini C; Gervais M; Passos FM; Ferrero I; Fukuhara H; Bolotin-Fukuhara M
    Eukaryot Cell; 2008 Nov; 7(11):1895-905. PubMed ID: 18806211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.
    Nussbaum I; Weindling E; Jubran R; Cohen A; Bar-Nun S
    PLoS One; 2014; 9(10):e111505. PubMed ID: 25356557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress.
    Wallace-Salinas V; Brink DP; Ahrén D; Gorwa-Grauslund MF
    BMC Genomics; 2015 Jul; 16(1):514. PubMed ID: 26156140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.