These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27009228)

  • 21. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field.
    Robert CA; Erb M; Hiltpold I; Hibbard BE; Gaillard MD; Bilat J; Degenhardt J; Cambet-Petit-Jean X; Turlings TC; Zwahlen C
    Plant Biotechnol J; 2013 Jun; 11(5):628-39. PubMed ID: 23425633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sesquiterpenoids and phenolics from roots of Taraxacum udum.
    Michalska K; Marciniuk J; Kisiel W
    Fitoterapia; 2010 Jul; 81(5):434-6. PubMed ID: 20006977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A native plant competitor mediates the impact of above- and belowground damage on an invasive tree.
    Carrillo J; Siemann E
    Ecol Appl; 2016 Oct; 26(7):2060-2071. PubMed ID: 27755734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae).
    Pankoke H; Bowers MD; Dobler S
    Insect Biochem Mol Biol; 2012 Jun; 42(6):426-34. PubMed ID: 22446106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores.
    Huang W; Siemann E; Carrillo J; Ding J
    Ann Bot; 2015 Apr; 115(5):841-6. PubMed ID: 25681822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relaxation of herbivore-mediated selection drives the evolution of genetic covariances between plant competitive and defense traits.
    Uesugi A; Connallon T; Kessler A; Monro K
    Evolution; 2017 Jun; 71(6):1700-1709. PubMed ID: 28394414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging role of roots in plant responses to above ground insect herbivory.
    Nalam VJ; Shah J; Nachappa P
    Insect Sci; 2013 Jun; 20(3):286-96. PubMed ID: 23955881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roots under attack: contrasting plant responses to below- and aboveground insect herbivory.
    Johnson SN; Erb M; Hartley SE
    New Phytol; 2016 Apr; 210(2):413-8. PubMed ID: 26781566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Root herbivores and detritivores shape above-ground multitrophic assemblage through plant-mediated effects.
    Megías AG; Müller C
    J Anim Ecol; 2010 Jul; 79(4):923-31. PubMed ID: 20302605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring evolutionary theories of plant defence investment using field populations of the deadly carrot.
    Martinez-Swatson K; Kjøller R; Cozzi F; Simonsen HT; Rønsted N; Barnes C
    Ann Bot; 2020 Apr; 125(5):737-750. PubMed ID: 31563960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Host Plants on Development and Immunity of a Generalist Insect Herbivore.
    Gallon ME; Smilanich AM
    J Chem Ecol; 2023 Apr; 49(3-4):142-154. PubMed ID: 36763248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage.
    Bustos-Segura C; Poelman EH; Reichelt M; Gershenzon J; Gols R
    Ecol Lett; 2017 Jan; 20(1):87-97. PubMed ID: 28000435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signal signature of aboveground-induced resistance upon belowground herbivory in maize.
    Erb M; Flors V; Karlen D; de Lange E; Planchamp C; D'Alessandro M; Turlings TC; Ton J
    Plant J; 2009 Jul; 59(2):292-302. PubMed ID: 19392694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coevolution can explain defensive secondary metabolite diversity in plants.
    Speed MP; Fenton A; Jones MG; Ruxton GD; Brockhurst MA
    New Phytol; 2015 Dec; 208(4):1251-63. PubMed ID: 26243527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct and indirect chemical defences against insects in a multitrophic framework.
    Gols R
    Plant Cell Environ; 2014 Aug; 37(8):1741-52. PubMed ID: 24588731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of plant identity and the level of plant decay on molecular gut content analysis in a herbivorous soil insect.
    Wallinger C; Staudacher K; Schallhart N; Peter E; Dresch P; Juen A; Traugott M
    Mol Ecol Resour; 2013 Jan; 13(1):75-83. PubMed ID: 23167731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds.
    Agrawal AA; Weber MG
    Ecol Lett; 2015 Oct; 18(10):985-91. PubMed ID: 26248499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant-mediated interactions between two herbivores differentially affect a subsequently arriving third herbivore in populations of wild cabbage.
    Kroes A; Stam JM; David A; Boland W; van Loon JJ; Dicke M; Poelman EH
    Plant Biol (Stuttg); 2016 Nov; 18(6):981-991. PubMed ID: 27492059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14.
    Holland JN; Cheng W; Crossley DA
    Oecologia; 1996 Mar; 107(1):87-94. PubMed ID: 28307195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soil abiotic factors influence interactions between belowground herbivores and plant roots.
    Erb M; Lu J
    J Exp Bot; 2013 Mar; 64(5):1295-303. PubMed ID: 23505310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.