These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27009352)

  • 1. Fish optimize sensing and respiration during undulatory swimming.
    Akanyeti O; Thornycroft PJ; Lauder GV; Yanagitsuru YR; Peterson AN; Liao JC
    Nat Commun; 2016 Mar; 7():11044. PubMed ID: 27009352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish.
    Ristroph L; Liao JC; Zhang J
    Phys Rev Lett; 2015 Jan; 114(1):018102. PubMed ID: 25615505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kármán vortex street detection by the lateral line.
    Chagnaud BP; Bleckmann H; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):753-63. PubMed ID: 17503054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fish exploiting vortices decrease muscle activity.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    Science; 2003 Nov; 302(5650):1566-9. PubMed ID: 14645849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas).
    McHenry MJ; Michel KB; Stewart W; Müller UK
    J Exp Biol; 2010 Apr; 213(Pt 8):1309-19. PubMed ID: 20348343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fish-inspired segment models for undulatory steady swimming.
    Akanyeti O; Di Santo V; Goerig E; Wainwright DK; Liao JC; Castro-Santos T; Lauder GV
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35487201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry.
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Nov; 205(Pt 21):3271-9. PubMed ID: 12324537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fish can save energy via proprioceptive sensing.
    Li L; Liu D; Deng J; Lutz MJ; Xie G
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34284360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinematic model of Kármán gaiting in rainbow trout.
    Akanyeti O; Liao JC
    J Exp Biol; 2013 Dec; 216(Pt 24):4666-77. PubMed ID: 24115054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pectoral fin locomotion in batoid fishes: undulation versus oscillation.
    Rosenberger LJ
    J Exp Biol; 2001 Jan; 204(Pt 2):379-94. PubMed ID: 11136623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsteady turbulent boundary layers in swimming rainbow trout.
    Yanase K; Saarenrinne P
    J Exp Biol; 2015 May; 218(Pt 9):1373-85. PubMed ID: 25750412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior, Electrophysiology, and Robotics Experiments to Study Lateral Line Sensing in Fishes.
    Haehnel-Taguchi M; Akanyeti O; Liao JC
    Integr Comp Biol; 2018 Nov; 58(5):874-883. PubMed ID: 29982706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal specific wavelength for maximum thrust production in undulatory propulsion.
    Nangia N; Bale R; Chen N; Hanna Y; Patankar NA
    PLoS One; 2017; 12(6):e0179727. PubMed ID: 28654649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle activity and hydrodynamic function of pelvic fins in trout (Oncorhynchus mykiss).
    Standen EM
    J Exp Biol; 2010 Mar; 213(5):831-41. PubMed ID: 20154199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Lambert FM; Combes D
    Front Neural Circuits; 2018; 12():95. PubMed ID: 30420798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group swimming behaviour and energetics in bluegill Lepomis macrochirus and rainbow trout Oncorhynchus mykiss.
    Currier M; Rouse J; Coughlin DJ
    J Fish Biol; 2021 Apr; 98(4):1105-1111. PubMed ID: 33277926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.