BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27009481)

  • 1. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.
    Cafferty BJ; Musetti C; Kim K; Horowitz ED; Krishnamurthy R; Hud NV
    Chem Commun (Camb); 2016 Apr; 52(31):5436-9. PubMed ID: 27009481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethidium and proflavine binding to a 2',5'-linked RNA duplex.
    Horowitz ED; Hud NV
    J Am Chem Soc; 2006 Dec; 128(48):15380-1. PubMed ID: 17131997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and dynamics of drug-DNA intercalation.
    Herzyk P; Neidle S; Goodfellow JM
    J Biomol Struct Dyn; 1992 Aug; 10(1):97-139. PubMed ID: 1418749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical nature of ethidium and proflavine interactions with nucleic acid bases in the intercalation plane.
    Langner KM; Kedzierski P; Sokalski WA; Leszczynski J
    J Phys Chem B; 2006 May; 110(19):9720-7. PubMed ID: 16686524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure and thermodynamics of 2',5' RNA intercalation.
    Horowitz ED; Lilavivat S; Holladay BW; Germann MW; Hud NV
    J Am Chem Soc; 2009 Apr; 131(16):5831-8. PubMed ID: 19309071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intercalating nucleic acids (INAs) with insertion of N-(pyren-1-ylmethyl)-(3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol. DNA (RNA) duplex and DNA three-way junction stabilities.
    Filichev VV; Pedersen EB
    Org Biomol Chem; 2003 Jan; 1(1):100-3. PubMed ID: 12929395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient stabilization of phosphodiester (PO), phosphorothioate (PS), and 2'-O-methoxy (2'-OMe) DNA·RNA hybrid duplexes by amino sugars.
    Charles I; Davis E; Arya DP
    Biochemistry; 2012 Jul; 51(27):5496-505. PubMed ID: 22639785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly stable duplex formation by artificial nucleic acids acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) with acyclic scaffolds.
    Murayama K; Tanaka Y; Toda T; Kashida H; Asanuma H
    Chemistry; 2013 Oct; 19(42):14151-8. PubMed ID: 24038212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of intercalator substituent and nucleotide sequence on the stability of DNA- and RNA-naphthalimide complexes.
    Johnson CA; Hudson GA; Hardebeck LK; Jolley EA; Ren Y; Lewis M; Znosko BM
    Bioorg Med Chem; 2015 Jul; 23(13):3586-91. PubMed ID: 25960324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrene intercalating nucleic acids with a carbon linker.
    Østergaard ME; Wamberg MC; Pedersen EB
    Nucleosides Nucleotides Nucleic Acids; 2011 Mar; 30(3):210-26. PubMed ID: 21491330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [DNA intercalators: their interaction with DNA and other cell components and their use in biological research].
    Faddeeva MD; Beliaeva TN
    Tsitologiia; 1991; 33(10):3-31. PubMed ID: 1814033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and sequence-dependent aspects of drug intercalation into nucleic acids.
    Neidle S; Abraham Z
    CRC Crit Rev Biochem; 1984; 17(1):73-121. PubMed ID: 6094101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel assemblies based on oligonucleotides containing intercalating nucleic acid monomers.
    Abdelrahman A; Gouda AS; Jørgensen PT; Wengel J
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):82-96. PubMed ID: 31674270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA triple helix stabilisation by a naphthylquinoline dimer.
    Keppler M; Zegrocka O; Strekowski L; Fox KR
    FEBS Lett; 1999 Mar; 447(2-3):223-6. PubMed ID: 10214950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of intercalator binding on DNA triplex stability: correlation with effects on A-tract duplex structure.
    Sandström K; Wärmländer S; Bergman J; Engqvist R; Leijon M; Gräslund A
    J Mol Recognit; 2004; 17(4):277-85. PubMed ID: 15227636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Easily denaturing nucleic acids derived from intercalating nucleic acids: thermal stability studies, dual duplex invasion and inhibition of transcription start.
    Filichev VV; Vester B; Hansen LH; Pedersen EB
    Nucleic Acids Res; 2005; 33(22):7129-37. PubMed ID: 16377781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercalating nucleic acids: the influence of linker length and intercalator type on their duplex stabilities.
    Christensen UB; Wamberg M; El-Essawy FA; Ismail Ael-H; Nielsen CB; Filichev VV; Jessen CH; Petersen M; Pedersen EB
    Nucleosides Nucleotides Nucleic Acids; 2004; 23(1-2):207-25. PubMed ID: 15043148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction between the novel intercalator diethidium cation and B-form DNA: a theoretical study.
    Monaco RR; Polkosnik W
    J Biomol Struct Dyn; 1996 Aug; 14(1):13-9. PubMed ID: 8877557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world.
    Horowitz ED; Engelhart AE; Chen MC; Quarles KA; Smith MW; Lynn DG; Hud NV
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5288-93. PubMed ID: 20212163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular model for proflavine-DNA intercalation.
    Neidle S; Pearl LH; Herzyk P; Berman HM
    Nucleic Acids Res; 1988 Sep; 16(18):8999-9016. PubMed ID: 3174439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.