These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 27009647)

  • 21. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature.
    Martin S; Cohu S; Vignot C; Zimmerman G; Gattuso JP
    Ecol Evol; 2013 Mar; 3(3):676-93. PubMed ID: 23533024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impacts of ocean warming and acidification on calcifying coral reef taxa: mechanisms responsible and adaptive capacity.
    Cornwall CE; Comeau S; Putnam H; Schoepf V
    Emerg Top Life Sci; 2022 Mar; 6(1):1-9. PubMed ID: 35157039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples.
    Kato A; Hikami M; Kumagai NH; Suzuki A; Nojiri Y; Sakai K
    Mar Environ Res; 2014 Mar; 94():1-6. PubMed ID: 24239067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell wall organic matrix composition and biomineralization across reef-building coralline algae under global change.
    Bergstrom E; Lahnstein J; Collins H; Page TM; Bulone V; Diaz-Pulido G
    J Phycol; 2023 Feb; 59(1):111-125. PubMed ID: 36301224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.
    Vásquez-Elizondo RM; Enríquez S
    Sci Rep; 2016 Jan; 6():19030. PubMed ID: 26740396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid multi-generational acclimation of coralline algal reproductive structures to ocean acidification.
    Moore B; Comeau S; Bekaert M; Cossais A; Purdy A; Larcombe E; Puerzer F; McCulloch MT; Cornwall CE
    Proc Biol Sci; 2021 May; 288(1950):20210130. PubMed ID: 33975470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).
    Wolfe K; Dworjanyn SA; Byrne M
    Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptomic stability or lability explains sensitivity to climate stressors in coralline algae.
    Page TM; McDougall C; Bar I; Diaz-Pulido G
    BMC Genomics; 2022 Oct; 23(1):729. PubMed ID: 36303112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of ocean acidification and warming on the productivity of a rock pool community.
    Legrand E; Riera P; Bohner O; Coudret J; Schlicklin F; Derrien M; Martin S
    Mar Environ Res; 2018 May; 136():78-88. PubMed ID: 29472033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification.
    Comeau S; Carpenter RC; Nojiri Y; Putnam HM; Sakai K; Edmunds PJ
    Proc Biol Sci; 2014 Sep; 281(1790):. PubMed ID: 25056628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification.
    de Carvalho RT; Rocha GM; Karez CS; da Gama Bahia R; Pereira RC; Bastos AC; Salgado LT
    Sci Rep; 2022 Jun; 12(1):9589. PubMed ID: 35688967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate.
    Comeau S; Carpenter RC; Edmunds PJ
    Proc Biol Sci; 2013 Feb; 280(1753):20122374. PubMed ID: 23256193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced spore germination explains sensitivity of reef-building algae to climate change stressors.
    Ordoñez A; Kennedy EV; Diaz-Pulido G
    PLoS One; 2017; 12(12):e0189122. PubMed ID: 29206887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ changes of tropical crustose coralline algae along carbon dioxide gradients.
    Fabricius KE; Kluibenschedl A; Harrington L; Noonan S; De'ath G
    Sci Rep; 2015 Apr; 5():9537. PubMed ID: 25835382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Major loss of coralline algal diversity in response to ocean acidification.
    Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM
    Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Future warming and acidification result in multiple ecological impacts to a temperate coralline alga.
    Huggett MJ; McMahon K; Bernasconi R
    Environ Microbiol; 2018 Aug; 20(8):2769-2782. PubMed ID: 29575500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The coral reef crisis: the critical importance of<350 ppm CO2.
    Veron JE; Hoegh-Guldberg O; Lenton TM; Lough JM; Obura DO; Pearce-Kelly P; Sheppard CR; Spalding M; Stafford-Smith MG; Rogers AD
    Mar Pollut Bull; 2009 Oct; 58(10):1428-36. PubMed ID: 19782832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability.
    Cornwall CE; Comeau S; DeCarlo TM; Moore B; D'Alexis Q; McCulloch MT
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30089625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ocean acidification causes structural deformities in juvenile coral skeletons.
    Foster T; Falter JL; McCulloch MT; Clode PL
    Sci Adv; 2016 Feb; 2(2):e1501130. PubMed ID: 26989776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral.
    Stubler AD; Furman BT; Peterson BJ
    Glob Chang Biol; 2015 Nov; 21(11):4006-20. PubMed ID: 26087148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.