These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27009720)

  • 1. NONPHOSPHORUS LIPIDS IN PERIPHYTON REFLECT AVAILABLE NUTRIENTS IN THE FLORIDA EVERGLADES, USA(1).
    Bellinger BJ; Van Mooy BA
    J Phycol; 2012 Apr; 48(2):303-11. PubMed ID: 27009720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid Composition Differences of Periphyton, Crustaceans, and Small Fishes in Response to Eutrophication and Management in the Florida Everglades, USA.
    Bellinger BJ; Cook MI; Hagerthey SE; Newman S; Kobza RM
    Lipids; 2021 Jan; 56(1):31-47. PubMed ID: 32777095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem.
    Daoust RJ; Childers DL
    Oecologia; 2004 Dec; 141(4):672-86. PubMed ID: 15365807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland.
    Gaiser EE; Scinto LJ; Richards JH; Jayachandran K; Childers DL; Trexler JC; Jones RD
    Water Res; 2004 Feb; 38(3):507-16. PubMed ID: 14723918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light increases energy transfer efficiency in a boreal stream.
    Lesutienė J; Gorokhova E; Stankevičienė D; Bergman E; Greenberg L
    PLoS One; 2014; 9(11):e113675. PubMed ID: 25412343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taxonomic Shift Over a Phosphorus Gradient Affects the Stoichiometry and Fatty Acid Composition of Stream Periphyton.
    Iannino A; Vosshage ATL; Weitere M; Fink P
    J Phycol; 2020 Dec; 56(6):1687-1695. PubMed ID: 32738149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling of omnivore-mediated positive and negative effects on periphyton mats.
    Geddes P; Trexler JC
    Oecologia; 2003 Aug; 136(4):585-95. PubMed ID: 12768404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural instability, multiple stable states, and hysteresis in periphyton driven by phosphorus enrichment in the Everglades.
    Dong Q; McCormick PV; Sklar FH; DeAngelis DL
    Theor Popul Biol; 2002 Feb; 61(1):1-13. PubMed ID: 11895379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periphyton as an indicator of saltwater intrusion into freshwater wetlands: insights from experimental manipulations.
    Mazzei V; Wilson BJ; Servais S; Charles SP; Kominoski JS; Gaiser EE
    Ecol Appl; 2020 Apr; 30(3):e02067. PubMed ID: 31872508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sediment toxicity and community composition of benthos and colonized periphyton in the Everglades-Florida Bay transitional zone.
    Lewis MA; Goodman LR; Macauley JM; Moore JC
    Ecotoxicology; 2004 Apr; 13(3):231-44. PubMed ID: 15217247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of nifH genotypes in floating periphyton mats along a nutrient gradient in the Florida Everglades.
    Jasrotia P; Ogram A
    Curr Microbiol; 2008 Jun; 56(6):563-8. PubMed ID: 18324437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams.
    Mulholland PJ; Steinman AD; Marzolf ER; Hart DR; DeAngelis DL
    Oecologia; 1994 Jun; 98(1):40-47. PubMed ID: 28312794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulolytic, fermentative, and methanogenic guilds in benthic periphyton mats from the Florida Everglades.
    Uz I; Chauhan A; Ogram AV
    FEMS Microbiol Ecol; 2007 Aug; 61(2):337-47. PubMed ID: 17651137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanisms responsible for the development of periphyton community structure during seasonal succession: the role of interspecies competition and plankton sedimentation].
    Lukin VB
    Zh Obshch Biol; 2003; 64(3):263-72. PubMed ID: 12815943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal synchronicity of algal assemblages in three Midwestern agricultural streams having varying concentrations of atrazine, nutrients, and sediment.
    Andrus JM; Winter D; Scanlan M; Sullivan S; Bollman W; Waggoner JB; Hosmer AJ; Brain RA
    Sci Total Environ; 2013 Aug; 458-460():125-39. PubMed ID: 23644566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of stream algae to grazing minnows and nutrients: a field test for interactions.
    Stewart AJ
    Oecologia; 1987 Apr; 72(1):1-7. PubMed ID: 28312888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic and synergistic effects on a stream periphyton community under the influence of pulsed flow velocity increase and nutrient enrichment.
    Bondar-Kunze E; Maier S; Schönauer D; Bahl N; Hein T
    Sci Total Environ; 2016 Dec; 573():594-602. PubMed ID: 27585428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining in situ periphyton community responses to nutrient and atrazine gradients via pigment analysis.
    Dalton RL; Boutin C; Pick FR
    Sci Total Environ; 2015 May; 515-516():70-82. PubMed ID: 25700361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.