These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 27009801)
1. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes. Adame V; Chapapas H; Cisneros M; Deaton C; Deichmann S; Gadek C; Lovato TL; Chechenova MB; Guerin P; Cripps RM Biochem Mol Biol Educ; 2016 May; 44(3):263-75. PubMed ID: 27009801 [TBL] [Abstract][Full Text] [Related]
2. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila. Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352 [TBL] [Abstract][Full Text] [Related]
3. Efficient CRISPR/Cas9 plasmids for rapid and versatile genome editing in Drosophila. Gokcezade J; Sienski G; Duchek P G3 (Bethesda); 2014 Sep; 4(11):2279-82. PubMed ID: 25236734 [TBL] [Abstract][Full Text] [Related]
4. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. Gratz SJ; Harrison MM; Wildonger J; O'Connor-Giles KM Methods Mol Biol; 2015; 1311():335-48. PubMed ID: 25981484 [TBL] [Abstract][Full Text] [Related]
5. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots. Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791 [TBL] [Abstract][Full Text] [Related]
6. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Port F; Chen HM; Lee T; Bullock SL Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2967-76. PubMed ID: 25002478 [TBL] [Abstract][Full Text] [Related]
7. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Thurtle-Schmidt DM; Lo TW Biochem Mol Biol Educ; 2018 Mar; 46(2):195-205. PubMed ID: 29381252 [TBL] [Abstract][Full Text] [Related]
8. An undergraduate laboratory experience using CRISPR-cas9 technology to deactivate green fluorescent protein expression in Escherichia coli. Pieczynski JN; Deets A; McDuffee A; Lynn Kee H Biochem Mol Biol Educ; 2019 Mar; 47(2):145-155. PubMed ID: 30664332 [TBL] [Abstract][Full Text] [Related]
9. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Gratz SJ; Cummings AM; Nguyen JN; Hamm DC; Donohue LK; Harrison MM; Wildonger J; O'Connor-Giles KM Genetics; 2013 Aug; 194(4):1029-35. PubMed ID: 23709638 [TBL] [Abstract][Full Text] [Related]
10. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice. Xu R; Wei P; Yang J Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567 [TBL] [Abstract][Full Text] [Related]
11. CRISPR-Cas9 Genome Editing in Drosophila. Gratz SJ; Rubinstein CD; Harrison MM; Wildonger J; O'Connor-Giles KM Curr Protoc Mol Biol; 2015 Jul; 111():31.2.1-31.2.20. PubMed ID: 26131852 [TBL] [Abstract][Full Text] [Related]
12. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Ma X; Zhu Q; Chen Y; Liu YG Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381 [TBL] [Abstract][Full Text] [Related]
14. Generation of genome-modified Drosophila cell lines using SwAP. Franz A; Brunner E; Basler K Fly (Austin); 2017 Oct; 11(4):303-311. PubMed ID: 28853976 [TBL] [Abstract][Full Text] [Related]
15. Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains. Cen Y; Timmermans B; Souffriau B; Thevelein JM; Van Dijck P Fungal Genet Biol; 2017 Oct; 107():44-50. PubMed ID: 28822858 [TBL] [Abstract][Full Text] [Related]
16. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing. Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730 [TBL] [Abstract][Full Text] [Related]
17. Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes. Mashiko D; Young SA; Muto M; Kato H; Nozawa K; Ogawa M; Noda T; Kim YJ; Satouh Y; Fujihara Y; Ikawa M Dev Growth Differ; 2014 Jan; 56(1):122-9. PubMed ID: 24372541 [TBL] [Abstract][Full Text] [Related]
18. Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria. Grenier F; Lucier JF; Rodrigue S Methods Mol Biol; 2015; 1334():233-44. PubMed ID: 26404154 [TBL] [Abstract][Full Text] [Related]
19. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. Dong S; Lin J; Held NL; Clem RJ; Passarelli AL; Franz AW PLoS One; 2015; 10(3):e0122353. PubMed ID: 25815482 [TBL] [Abstract][Full Text] [Related]
20. [From random mutagenesis to precise genome editing: the development and evolution of genome editing techniques in Drosophila]. Su F; Huang ZL; Guo YW; Jiao RJ; Zi L; Chen JM; Liu JY Yi Chuan; 2016 Jan; 38(1):17-27. PubMed ID: 26787520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]