These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27009902)

  • 1. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model.
    Li Y; Li Q; Chen B
    Sci Rep; 2016 Mar; 6():23554. PubMed ID: 27009902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy.
    Li Q; Chen B
    Environ Sci Technol; 2014 May; 48(9):4774-81. PubMed ID: 24678956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and biophysical study of fruit cuticles.
    Chatterjee S; Sarkar S; Oktawiec J; Mao Z; Niitsoo O; Stark RE
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22490984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenanthrene sorption by fruit cuticles and potato periderm with different compositional characteristics.
    Li Y; Chen B
    J Agric Food Chem; 2009 Jan; 57(2):637-44. PubMed ID: 19154164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities.
    Schreiber L
    J Exp Bot; 2006; 57(11):2515-23. PubMed ID: 16882646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes.
    Li Q; Li Y; Zhu L; Xing B; Chen B
    Sci Rep; 2017 Apr; 7():46235. PubMed ID: 28393859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity.
    Diarte C; Xavier de Souza A; Staiger S; Deininger AC; Bueno A; Burghardt M; Graell J; Riederer M; Lara I; Leide J
    Plant Physiol Biochem; 2021 Jan; 158():434-445. PubMed ID: 33257229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.
    Zeisler V; Schreiber L
    Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.
    Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M
    J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of chlorophenols onto fruit cuticles and potato periderm.
    Li Y; Deng Y; Chen B
    J Environ Sci (China); 2012; 24(4):675-81. PubMed ID: 22894102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax.
    Zeisler-Diehl V; Müller Y; Schreiber L
    J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant surface properties in chemical ecology.
    Müller C; Riederer M
    J Chem Ecol; 2005 Nov; 31(11):2621-51. PubMed ID: 16273432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sorption of 1-naphthol to plant cuticular waxes with different states].
    Chen BL; Zhou DD; Li YG; Zhu LZ
    Huan Jing Ke Xue; 2008 Jun; 29(6):1671-5. PubMed ID: 18763521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles.
    Chen B; Li Y; Guo Y; Zhu L; Schnoor JL
    Environ Sci Technol; 2008 Mar; 42(5):1517-23. PubMed ID: 18441797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces.
    Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC
    Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase.
    Vogg G; Fischer S; Leide J; Emmanuel E; Jetter R; Levy AA; Riederer M
    J Exp Bot; 2004 Jun; 55(401):1401-10. PubMed ID: 15133057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cuticular wax composition and crystal coverage of leaves and petals differ in a consistent manner between plant species.
    Tunstad SA; Bull ID; Rands SA; Whitney HM
    Open Biol; 2024 May; 14(5):230430. PubMed ID: 38806146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.
    Kim H; Choi D; Suh MC
    Plant Cell Rep; 2017 Jun; 36(6):815-827. PubMed ID: 28280927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement and regeneration of epicuticular waxes through plant cuticles.
    Neinhuis C; Koch K; Barthlott W
    Planta; 2001 Jul; 213(3):427-34. PubMed ID: 11506366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low vapor pressure deficit reduces glandular trichome density and modifies the chemical composition of cuticular waxes in silver birch leaves.
    Lihavainen J; Ahonen V; Keski-Saari S; Sõber A; Oksanen E; Keinänen M
    Tree Physiol; 2017 Sep; 37(9):1166-1181. PubMed ID: 28460081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.