These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27010022)

  • 1. Bayesian Inference of Natural Selection from Allele Frequency Time Series.
    Schraiber JG; Evans SN; Slatkin M
    Genetics; 2016 May; 203(1):493-511. PubMed ID: 27010022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting and Quantifying Natural Selection at Two Linked Loci from Time Series Data of Allele Frequencies with Forward-in-Time Simulations.
    He Z; Dai X; Beaumont M; Yu F
    Genetics; 2020 Oct; 216(2):521-541. PubMed ID: 32826299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Temporally Variable Selection Intensity from Ancient DNA Data.
    He Z; Dai X; Lyu W; Beaumont M; Yu F
    Mol Biol Evol; 2023 Mar; 40(3):. PubMed ID: 36661852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Natural Selection and Allele Age from Time Series Allele Frequency Data Using a Novel Likelihood-Based Approach.
    He Z; Dai X; Beaumont M; Yu F
    Genetics; 2020 Oct; 216(2):463-480. PubMed ID: 32769100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring the model and onset of natural selection under varying population size from the site frequency spectrum and haplotype structure.
    Nakagome S; Hudson RR; Di Rienzo A
    Proc Biol Sci; 2019 Feb; 286(1896):20182541. PubMed ID: 30963935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference of selection in a heterogeneous environment from genetic time-series data.
    Gompert Z
    Mol Ecol; 2016 Jan; 25(1):121-34. PubMed ID: 26184577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian inference of selection in the Wright-Fisher diffusion model.
    Gory JJ; Herbei R; Kubatko LS
    Stat Appl Genet Mol Biol; 2018 Jun; 17(3):. PubMed ID: 29874197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring the timing and strength of natural selection and gene migration in the evolution of chicken from ancient DNA data.
    Lyu W; Dai X; Beaumont M; Yu F; He Z
    Mol Ecol Resour; 2022 May; 22(4):1362-1379. PubMed ID: 34783162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating allele age and selection coefficient from time-serial data.
    Malaspinas AS; Malaspinas O; Evans SN; Slatkin M
    Genetics; 2012 Oct; 192(2):599-607. PubMed ID: 22851647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The consequences of not accounting for background selection in demographic inference.
    Ewing GB; Jensen JD
    Mol Ecol; 2016 Jan; 25(1):135-41. PubMed ID: 26394805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data.
    Stern AJ; Wilton PR; Nielsen R
    PLoS Genet; 2019 Sep; 15(9):e1008384. PubMed ID: 31518343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SmileFinder: a resampling-based approach to evaluate signatures of selection from genome-wide sets of matching allele frequency data in two or more diploid populations.
    Guiblet WM; Zhao K; O'Brien SJ; Massey SE; Roca AL; Oleksyk TK
    Gigascience; 2015; 4():1. PubMed ID: 25838885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data.
    Foll M; Shim H; Jensen JD
    Mol Ecol Resour; 2015 Jan; 15(1):87-98. PubMed ID: 24834845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of selected genealogies.
    Slade PF
    Theor Popul Biol; 2000 Feb; 57(1):35-49. PubMed ID: 10708627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the Ages of Selection Signals from Different Epochs in Human History.
    Nakagome S; Alkorta-Aranburu G; Amato R; Howie B; Peter BM; Hudson RR; Di Rienzo A
    Mol Biol Evol; 2016 Mar; 33(3):657-69. PubMed ID: 26545921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting and measuring selection from gene frequency data.
    Vitalis R; Gautier M; Dawson KJ; Beaumont MA
    Genetics; 2014 Mar; 196(3):799-817. PubMed ID: 24361938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bait-ER: A Bayesian method to detect targets of selection in Evolve-and-Resequence experiments.
    Barata C; Borges R; Kosiol C
    J Evol Biol; 2023 Jan; 36(1):29-44. PubMed ID: 36544394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating linkage disequilibrium and selection from allele frequency trajectories.
    Li Y; Barton JP
    Genetics; 2023 Mar; 223(3):. PubMed ID: 36610715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using environmental correlations to identify loci underlying local adaptation.
    Coop G; Witonsky D; Di Rienzo A; Pritchard JK
    Genetics; 2010 Aug; 185(4):1411-23. PubMed ID: 20516501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of selection intensity under overdominance by Bayesian methods.
    Buzbas EO; Joyce P; Abdo Z
    Stat Appl Genet Mol Biol; 2009; 8(1):Article32. PubMed ID: 19572831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.