BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27010123)

  • 1. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.
    Chen SX; Seelig G
    J Am Chem Soc; 2016 Apr; 138(15):5076-86. PubMed ID: 27010123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hairpin/DNA ring ternary probes for highly sensitive detection and selective discrimination of microRNA among family members.
    Liu X; Zou M; Li D; Yuan R; Xiang Y
    Anal Chim Acta; 2019 Oct; 1076():138-143. PubMed ID: 31203958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed discrimination of microRNA single nucleotide variants through triplex molecular beacon sensors.
    Wu X; Guo B; Sheng Y; Zhang Y; Wang J; Peng S; Liu L; Wu HC
    Chem Commun (Camb); 2018 Jul; 54(55):7673-7676. PubMed ID: 29938280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroanalysis of single-nucleotide polymorphism by hairpin DNA architectures.
    Abi A; Ferapontova EE
    Anal Bioanal Chem; 2013 Apr; 405(11):3693-703. PubMed ID: 23263518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of single nucleotide polymorphisms by strand exchange assay using partially double-stranded probes.
    Hirata K; Ishii D; Kano A; Yamayoshi A; Akaike T; Maruyama A
    Nucleic Acids Symp Ser (Oxf); 2005; (49):223-4. PubMed ID: 17150714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.
    Song L; Zhang Y; Li J; Gao Q; Qi H; Zhang C
    Appl Spectrosc; 2016 Apr; 70(4):688-94. PubMed ID: 26879193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleic Acid Self-Assembly Circuitry Aided by Exonuclease III for Discrimination of Single Nucleotide Variants.
    Zhang Z; Hsing IM
    Anal Chem; 2017 Nov; 89(22):12466-12471. PubMed ID: 29069899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general strategy for highly sensitive analysis of genetic biomarkers at single-base resolution with ligase-based isothermally exponential amplification.
    Wang H; Wang H; Sun Y; Liu X; Liu Y; Wang C; Zhang P; Li Z
    Talanta; 2020 May; 212():120754. PubMed ID: 32113533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new class of homogeneous nucleic acid probes based on specific displacement hybridization.
    Li Q; Luan G; Guo Q; Liang J
    Nucleic Acids Res; 2002 Jan; 30(2):E5. PubMed ID: 11788731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making ends meet in genetic analysis using padlock probes.
    Nilsson M; Banér J; Mendel-Hartvig M; Dahl F; Antson DO; Gullberg M; Landegren U
    Hum Mutat; 2002 Apr; 19(4):410-5. PubMed ID: 11933195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding detection windows for discriminating single nucleotide variants using rationally designed DNA equalizer probes.
    Wang GA; Xie X; Mansour H; Chen F; Matamoros G; Sanchez AL; Fan C; Li F
    Nat Commun; 2020 Oct; 11(1):5473. PubMed ID: 33122648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invading stacking primer: A trigger for high-efficiency isothermal amplification reaction with superior selectivity for detecting microRNA variants.
    Liu W; Zhu M; Liu H; Wei J; Zhou X; Xing D
    Biosens Bioelectron; 2016 Jul; 81():309-316. PubMed ID: 26985583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization kinetics of double-stranded DNA probes for rapid molecular analysis.
    Gidwani V; Riahi R; Zhang DD; Wong PK
    Analyst; 2009 Aug; 134(8):1675-81. PubMed ID: 20448937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the Toehold Strategy of On-Chip Nucleic Acid Hybridization Probe for the Discrimination of Single Nucleotide Polymorphism.
    Zhou X; Yao D; He M; Xiao S; Liang H
    Langmuir; 2018 Dec; 34(49):14811-14816. PubMed ID: 30110553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining competitive sequestration with nonlinear hybridization chain reaction amplification: an ultra-specific and highly sensitive sensing strategy for single-nucleotide variants.
    Zhao Y; Feng Y; Zhang Y; Xia P; Xiao Z; Wang Z; Yan H
    Anal Chim Acta; 2020 Sep; 1130():107-116. PubMed ID: 32892930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for optimizing DNA hybridization on surfaces.
    Ravan H; Kashanian S; Sanadgol N; Badoei-Dalfard A; Karami Z
    Anal Biochem; 2014 Jan; 444():41-6. PubMed ID: 24121011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization.
    Arata H; Komatsu H; Han A; Hosokawa K; Maeda M
    Analyst; 2012 Jul; 137(14):3234-7. PubMed ID: 22614070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation-guided DNA probe design for consistently ultraspecific hybridization.
    Wang JS; Zhang DY
    Nat Chem; 2015 Jul; 7(7):545-53. PubMed ID: 26100802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy.
    Friedrich A; Hoheisel JD; Marmé N; Knemeyer JP
    FEBS Lett; 2007 Apr; 581(8):1644-8. PubMed ID: 17399707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative strand displacement circuit with dual-toehold and bulge-loop structure for single-nucleotide variations discrimination.
    Bai D; Zhou X; Luo W; Yu H; Bai S; Wu Y; Song L; Chen K; Xie Y; Chen X; Zhao J; Fu Y; Yang Y; Li J; Xie G
    Biosens Bioelectron; 2022 Nov; 216():114677. PubMed ID: 36087401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.