These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27010406)

  • 1. The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system.
    Ji J; Hu Y; Meng Y; Zhang J; Xu J; Li S; Yang G
    Nanotechnology; 2016 May; 27(18):185303. PubMed ID: 27010406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flying plasmonic lens in the near field for high-speed nanolithography.
    Srituravanich W; Pan L; Wang Y; Sun C; Bogy DB; Zhang X
    Nat Nanotechnol; 2008 Dec; 3(12):733-7. PubMed ID: 19057593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth.
    Shi S; Zhang Z; Du J; Yang Z; Shi R; Li S; Gao F
    Opt Lett; 2012 Jan; 37(2):247-9. PubMed ID: 22854482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field.
    Baek S; Kang G; Kang M; Lee CW; Kim K
    Sci Rep; 2016 Jul; 6():30476. PubMed ID: 27457127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale line segment fabrication using super-resolution near-field photolithography.
    Yang CB
    Scanning; 2012; 34(5):284-94. PubMed ID: 22753279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact Photolithography at Sub-Micrometer Scale Using a Soft Photomask.
    Wu CY; Hsieh H; Lee YC
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Metal Reflector for Redistributing the Focusing Intensity of SPPs.
    Ji J; Xu P; Lin Z; Chen J; Li J; Meng Y
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32413982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pushing the resolution of photolithography down to 15nm by surface plasmon interference.
    Dong J; Liu J; Kang G; Xie J; Wang Y
    Sci Rep; 2014 Jul; 4():5618. PubMed ID: 25001238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanolithography in the quasi-far field based on the destructive interference effect of surface plasmon polaritons.
    Wan X; Wang Q; Tao H
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):973-6. PubMed ID: 20448762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apertureless beam pen lithography based on fully metal-coated polyurethane-acrylate (PUA) pyramidal microstructure array.
    Wu CY; Lee YC
    Opt Express; 2014 May; 22(9):10593-604. PubMed ID: 24921761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 40  nm thick photoresist-compatible plasmonic nanolithography using a bowtie aperture combined with a metal-insulator-metal structure.
    Jiang Z; Luo H; Guo S; Wang L
    Opt Lett; 2019 Feb; 44(4):783-786. PubMed ID: 30767986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photolithography-Based Nanopatterning Using Re-entrant Photoresist Profile.
    Kim TJ; Jung YH; Zhang H; Kim K; Lee J; Ma Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8117-8123. PubMed ID: 29345131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation.
    Han D; Deng S; Ye T; Wei Y
    Microsyst Nanoeng; 2023; 9():40. PubMed ID: 37007604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography.
    Williams C; Bartholomew R; Rughoobur G; Gordon GS; Flewitt AJ; Wilkinson TD
    Nanotechnology; 2016 Dec; 27(48):485301. PubMed ID: 27811383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer film selection for corrosion protection of data storage magnetic materials.
    Chatruprachewin S; Supadee L; Titiroongruang W
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10579-83. PubMed ID: 22408952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photolithographic fabrication of a high-precision bar-code pattern on the surface of a sphere.
    Park K; Atkins RA; Taylor HF; Gardner JN; Lee CE
    Appl Opt; 2005 Mar; 44(9):1538-42. PubMed ID: 15813254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative-tone molecular glass photoresist for high-resolution electron beam lithography.
    Wang Y; Chen L; Yu J; Guo X; Wang S; Yang G
    R Soc Open Sci; 2021 Mar; 8(3):202132. PubMed ID: 33959364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser parallel nanofabrication by single femtosecond pulse near-field ablation using photoresist masks.
    Jipa F; Dinescu A; Filipescu M; Anghel I; Zamfirescu M; Dabu R
    Opt Express; 2014 Feb; 22(3):3356-61. PubMed ID: 24663626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed near-field photolithography at 16.85 nm linewidth with linearly polarized illumination.
    Ji J; Meng Y; Hu Y; Xu J; Li S; Yang G
    Opt Express; 2017 Jul; 25(15):17571-17580. PubMed ID: 28789249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.