BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 27010428)

  • 1. Identification of seco-clavilactone B as a small-molecule actin polymerization inhibitor.
    Miyazaki S; Sasazawa Y; Mogi T; Suzuki T; Yoshida K; Dohmae N; Takao K; Simizu S
    FEBS Lett; 2016 Apr; 590(8):1163-73. PubMed ID: 27010428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based virtual screening identifies a small-molecule inhibitor of the profilin 1-actin interaction.
    Gau D; Lewis T; McDermott L; Wipf P; Koes D; Roy P
    J Biol Chem; 2018 Feb; 293(7):2606-2616. PubMed ID: 29282288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Violaceols function as actin inhibitors inducing cell shape elongation in fibroblast cells.
    Asami Y; Jang JH; Oh H; Sohn JH; Kim JW; Moon DO; Kwon O; Kawatani M; Osada H; Kim BY; Ahn JS
    Biosci Biotechnol Biochem; 2012; 76(8):1431-7. PubMed ID: 22878183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effects of pectenotoxins from marine algae on the polymerization of various actin isoforms.
    Butler SC; Miles CO; Karim A; Twiner MJ
    Toxicol In Vitro; 2012 Apr; 26(3):493-9. PubMed ID: 22239979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The β-Carboline Harmine Induces Actin Dynamic Remodeling and Abrogates the Malignant Phenotype in Tumorigenic Cells.
    Le Moigne R; Subra F; Karam M; Auclair C
    Cells; 2020 May; 9(5):. PubMed ID: 32397195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel actin depolymerizing macrolide aplyronine A.
    Saito S; Watabe S; Ozaki H; Kigoshi H; Yamada K; Fusetani N; Karaki H
    J Biochem; 1996 Sep; 120(3):552-5. PubMed ID: 8902620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel small-molecule compounds that affect cellular morphogenesis in yeast and mammalian cells.
    Fukunaga T; Nakamura M; Kitagawa T; Watanapokasin R; Hoshida H; Akada R
    Biosci Biotechnol Biochem; 2013; 77(8):1669-76. PubMed ID: 23924729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural implications of the chemical modification of Cys(10) on actin.
    Eli-Berchoer L; Reisler E; Muhlrad A
    Biophys J; 2000 Mar; 78(3):1482-9. PubMed ID: 10692333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The polymerization of actin: extent of polymerization under pressure, volume change of polymerization, and relaxation after temperature jumps.
    Matthews JN; Yim PB; Jacobs DT; Forbes JG; Peters ND; Greer SC
    J Chem Phys; 2005 Aug; 123(7):074904. PubMed ID: 16229617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of the actin polymerization status as an apoptotic morphological effector in HL-60 cells.
    Rao JY; Jin YS; Zheng Q; Cheng J; Tai J; Hemstreet GP
    J Cell Biochem; 1999 Dec; 75(4):686-97. PubMed ID: 10572251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin polymerization is required for negative feedback regulation of epidermal growth factor-induced signal transduction.
    Rijken PJ; van Hal GJ; van der Heyden MA; Verkleij AJ; Boonstra J
    Exp Cell Res; 1998 Sep; 243(2):254-62. PubMed ID: 9743585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy.
    Heintz D; Kany H; Kalbitzer HR
    Biochemistry; 1996 Oct; 35(39):12686-93. PubMed ID: 8841112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationship of seco-tanapartholides isolated from Achillea falcata for inhibition of HaCaT cell growth.
    Ghantous A; Nasser N; Saab I; Darwiche N; Saliba NA
    Eur J Med Chem; 2009 Sep; 44(9):3794-7. PubMed ID: 19464086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior.
    Cipolla MJ; Gokina NI; Osol G
    FASEB J; 2002 Jan; 16(1):72-6. PubMed ID: 11772938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces.
    Zhang X; Hu X; Lei H; Hu J; Zhang Y
    Nanoscale; 2016 Mar; 8(11):6008-13. PubMed ID: 26928199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconventional actin configurations step into the limelight.
    Silván U; Jockusch BM; Schoenenberger CA
    Adv Protein Chem Struct Biol; 2013; 90():151-77. PubMed ID: 23582204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular factors mediate cadmium-dependent actin depolymerization.
    Wang Z; Templeton DM
    Toxicol Appl Pharmacol; 1996 Jul; 139(1):115-21. PubMed ID: 8685893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADP-ribosylation of Arg28 and Arg206 on the actin molecule by chicken arginine-specific ADP-ribosyltransferase.
    Terashima M; Yamamori C; Shimoyama M
    Eur J Biochem; 1995 Jul; 231(1):242-9. PubMed ID: 7628477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of actin as a 15-deoxy-Delta12,14-prostaglandin J2 target in neuroblastoma cells: mass spectrometric, computational, and functional approaches to investigate the effect on cytoskeletal derangement.
    Aldini G; Carini M; Vistoli G; Shibata T; Kusano Y; Gamberoni L; Dalle-Donne I; Milzani A; Uchida K
    Biochemistry; 2007 Mar; 46(10):2707-18. PubMed ID: 17297918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of oxidovanadium(IV) binding to actin.
    Ramos S; Almeida RM; Moura JJ; Aureliano M
    J Inorg Biochem; 2011 Jun; 105(6):777-83. PubMed ID: 21497575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.