BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27010485)

  • 1. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome.
    Yue H; Fang H; Wei S; Hayes JJ; Lee TH
    Biochemistry; 2016 Apr; 55(14):2069-77. PubMed ID: 27010485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.
    Garcia-Saez I; Menoni H; Boopathi R; Shukla MS; Soueidan L; Noirclerc-Savoye M; Le Roy A; Skoufias DA; Bednar J; Hamiche A; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2018 Dec; 72(5):902-915.e7. PubMed ID: 30392928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Investigations on Histone H2A-H2B Dynamics in the Nucleosome.
    Lee J; Lee TH
    Biochemistry; 2017 Feb; 56(7):977-985. PubMed ID: 28128545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly.
    Aguilar-Gurrieri C; Larabi A; Vinayachandran V; Patel NA; Yen K; Reja R; Ebong IO; Schoehn G; Robinson CV; Pugh BF; Panne D
    EMBO J; 2016 Jul; 35(13):1465-82. PubMed ID: 27225933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone H1 compacts DNA under force and during chromatin assembly.
    Xiao B; Freedman BS; Miller KE; Heald R; Marko JF
    Mol Biol Cell; 2012 Dec; 23(24):4864-71. PubMed ID: 23097493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone octamer rearranges to adapt to DNA unwrapping.
    Bilokapic S; Strauss M; Halic M
    Nat Struct Mol Biol; 2018 Jan; 25(1):101-108. PubMed ID: 29323273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
    Wu H; Dalal Y; Papoian GA
    J Mol Biol; 2021 Mar; 433(6):166881. PubMed ID: 33617899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linker histones: novel insights into structure-specific recognition of the nucleosome.
    Cutter AR; Hayes JJ
    Biochem Cell Biol; 2017 Apr; 95(2):171-178. PubMed ID: 28177778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome.
    Lee KM; Hayes JJ
    Biochemistry; 1998 Jun; 37(24):8622-8. PubMed ID: 9628723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes.
    Vlijm R; Lee M; Lipfert J; Lusser A; Dekker C; Dekker NH
    Cell Rep; 2015 Jan; 10(2):216-25. PubMed ID: 25578730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability.
    Ferreira H; Somers J; Webster R; Flaus A; Owen-Hughes T
    Mol Cell Biol; 2007 Jun; 27(11):4037-48. PubMed ID: 17387148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of nucleosome assembly and effects of DNA methylation.
    Lee JY; Lee J; Yue H; Lee TH
    J Biol Chem; 2015 Feb; 290(7):4291-303. PubMed ID: 25550164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin structure-dependent conformations of the H1 CTD.
    Fang H; Wei S; Lee TH; Hayes JJ
    Nucleic Acids Res; 2016 Nov; 44(19):9131-9141. PubMed ID: 27365050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.
    Kermekchiev M; Workman JL; Pikaard CS
    Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A putative DNA binding surface in the globular domain of a linker histone is not essential for specific binding to the nucleosome.
    Hayes JJ; Kaplan R; Ura K; Pruss D; Wolffe A
    J Biol Chem; 1996 Oct; 271(42):25817-22. PubMed ID: 8824211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
    Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G
    Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linker histone variants control chromatin dynamics during early embryogenesis.
    Saeki H; Ohsumi K; Aihara H; Ito T; Hirose S; Ura K; Kaneda Y
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5697-702. PubMed ID: 15821029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.