These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27010817)

  • 1. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics.
    Nagata Y; Ohto T; Backus EH; Bonn M
    J Phys Chem B; 2016 Apr; 120(16):3785-96. PubMed ID: 27010817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface tension of ab initio liquid water at the water-air interface.
    Nagata Y; Ohto T; Bonn M; Kühne TD
    J Chem Phys; 2016 May; 144(20):204705. PubMed ID: 27250323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation.
    Tang F; Ohto T; Sun S; Rouxel JR; Imoto S; Backus EHG; Mukamel S; Bonn M; Nagata Y
    Chem Rev; 2020 Apr; 120(8):3633-3667. PubMed ID: 32141737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio Modeling of the Vibrational Sum-Frequency Generation Spectrum of Interfacial Water.
    Liang C; Jeon J; Cho M
    J Phys Chem Lett; 2019 Mar; 10(5):1153-1158. PubMed ID: 30802060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-world predictions from ab initio molecular dynamics simulations.
    Kirchner B; di Dio PJ; Hutter J
    Top Curr Chem; 2012; 307():109-53. PubMed ID: 21842358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physico-chemical properties of aqueous drug solutions: From the basic thermodynamics to the advanced experimental and simulation results.
    Bellich B; Gamini A; Brady JW; Cesàro A
    Int J Pharm; 2018 Apr; 540(1-2):65-77. PubMed ID: 29412151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.
    Müller EA; Jackson G
    Annu Rev Chem Biomol Eng; 2014; 5():405-27. PubMed ID: 24702297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Dynamics of Water at the Water-Air Interface Using First-Principles Molecular Dynamics Simulations within Generalized Gradient Approximation.
    Ohto T; Dodia M; Imoto S; Nagata Y
    J Chem Theory Comput; 2019 Jan; 15(1):595-602. PubMed ID: 30468702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polarizable reactive force field for water to enable molecular dynamics simulations of proton transport.
    Asthana A; Wheeler DR
    J Chem Phys; 2013 May; 138(17):174502. PubMed ID: 23656139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and vibrational spectroscopy of salt water/air interfaces: predictions from classical molecular dynamics simulations.
    Brown EC; Mucha M; Jungwirth P; Tobias DJ
    J Phys Chem B; 2005 Apr; 109(16):7934-40. PubMed ID: 16851926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic and thermodynamic properties of the HFA134a-water interface: atomistic computer simulations and tensiometry under pressure.
    Peguin RP; Selvam P; da Rocha SR
    Langmuir; 2006 Oct; 22(21):8826-30. PubMed ID: 17014124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field.
    Yang ZZ; Li X
    J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models.
    Baron R; Trzesniak D; de Vries AH; Elsener A; Marrink SJ; van Gunsteren WF
    Chemphyschem; 2007 Feb; 8(3):452-61. PubMed ID: 17290360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Dec; 141(22):22D505. PubMed ID: 25494776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-Graining the Liquid-Liquid Interfaces with the MARTINI Force Field: How Is the Interfacial Tension Reproduced?
    Ndao M; Devémy J; Ghoufi A; Malfreyt P
    J Chem Theory Comput; 2015 Aug; 11(8):3818-28. PubMed ID: 26574463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.
    Leroy F; Müller-Plathe F
    Langmuir; 2015 Aug; 31(30):8335-45. PubMed ID: 26158205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.