BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27011076)

  • 21. Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation.
    Yoshida N; Ikeda R; Okuno T
    Bioresour Technol; 2006 Oct; 97(15):1843-9. PubMed ID: 16226026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel astaxanthin-binding photooxidative stress-inducible aqueous carotenoprotein from a eukaryotic microalga isolated from asphalt in midsummer.
    Kawasaki S; Mizuguchi K; Sato M; Kono T; Shimizu H
    Plant Cell Physiol; 2013 Jul; 54(7):1027-40. PubMed ID: 23737502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila.
    Spijkerman E; Behrend H; Fach B; Gaedke U
    Sci Total Environ; 2018 Jun; 626():1342-1349. PubMed ID: 29898541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An unexpected guest: a green microalga associated with the arsenic-tolerant shrub Acacia farnesiana.
    Alcántara-Martínez N; Figueroa-Martínez F; Rivera-Cabrera F; Volke-Sepúlveda T
    FEMS Microbiol Ecol; 2022 Apr; 98(4):. PubMed ID: 35394028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatty acid content and profile of the aerial microalga Coccomyxa sp. isolated from dry environments.
    Abe K; Ishiwatari T; Wakamatsu M; Aburai N
    Appl Biochem Biotechnol; 2014 Nov; 174(5):1724-35. PubMed ID: 25146196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.
    Messerli MA; Amaral-Zettler LA; Zettler E; Jung SK; Smith PJ; Sogin ML
    J Exp Biol; 2005 Jul; 208(Pt 13):2569-79. PubMed ID: 15961743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions.
    Campenni' L; Nobre BP; Santos CA; Oliveira AC; Aires-Barros MR; Palavra AM; Gouveia L
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1383-93. PubMed ID: 23160982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies.
    Ho SH; Chan MC; Liu CC; Chen CY; Lee WL; Lee DJ; Chang JS
    Bioresour Technol; 2014; 152():275-82. PubMed ID: 24296122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of a novel lutein-producing marine microalga using high throughput screening.
    Asker D; Awad TS
    Food Res Int; 2019 Feb; 116():660-667. PubMed ID: 30716993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain).
    Olías M; Nieto JM; Sarmiento AM; Cerón JC; Cánovas CR
    Sci Total Environ; 2004 Oct; 333(1-3):267-81. PubMed ID: 15364534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain).
    Santos Bermejo JC; Beltrán R; Gómez Ariza JL
    Environ Int; 2003 Apr; 29(1):69-77. PubMed ID: 12605939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screening factors influencing the production of astaxanthin from freshwater and marine microalgae.
    Binti Ibnu Rasid EN; Mohamad SE; Jamaluddin H; Salleh MM
    Appl Biochem Biotechnol; 2014 Feb; 172(4):2160-74. PubMed ID: 24338298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria.
    Graziani G; Schiavo S; Nicolai MA; Buono S; Fogliano V; Pinto G; Pollio A
    Food Funct; 2013 Jan; 4(1):144-52. PubMed ID: 23104098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of heavy metals on the growth of tropical microalga Tetrasermis chuii (Prasinophyceae)].
    Cordero J; Guevara M; Morales E; Lodeiros C
    Rev Biol Trop; 2005; 53(3-4):325-30. PubMed ID: 17354443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101.
    Hong WK; Rairakhwada D; Seo PS; Park SY; Hur BK; Kim CH; Seo JW
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1468-80. PubMed ID: 21424706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic speciation in river and estuarine waters from southwest Spain.
    Sánchez-Rodas D; Luis Gómez-Ariza J; Giráldez I; Velasco A; Morales E
    Sci Total Environ; 2005 Jun; 345(1-3):207-17. PubMed ID: 15919540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara.
    Grama BS; Chader S; Khelifi D; Agathos SN; Jeffryes C
    Bioresour Technol; 2014 Jan; 151():297-305. PubMed ID: 24262839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Outdoor H₂ production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii.
    Scoma A; Giannelli L; Faraloni C; Torzillo G
    J Biotechnol; 2012 Feb; 157(4):620-7. PubMed ID: 21771618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production.
    Li T; Zheng Y; Yu L; Chen S
    Bioresour Technol; 2013 Mar; 131():60-7. PubMed ID: 23340103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of several waste substrates for carotenoid-rich yeast biomass production.
    Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A
    J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.