These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 27011316)
1. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast. Wang X; Liu ZL; Weber SA; Zhang X PLoS One; 2016; 11(3):e0151293. PubMed ID: 27011316 [TBL] [Abstract][Full Text] [Related]
2. Cellulosic Ethanol Production Using a Dual Functional Novel Yeast. Liu ZL; Dien BS Int J Microbiol; 2022; 2022():7853935. PubMed ID: 35295685 [TBL] [Abstract][Full Text] [Related]
3. Two new β-glucosidases from ethanol-fermenting fungus Mucor circinelloides NBRC 4572: enzyme purification, functional characterization, and molecular cloning of the gene. Kato Y; Nomura T; Ogita S; Takano M; Hoshino K Appl Microbiol Biotechnol; 2013 Dec; 97(23):10045-56. PubMed ID: 24061417 [TBL] [Abstract][Full Text] [Related]
4. A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. Liu ZL; Weber SA; Cotta MA; Li SZ Bioresour Technol; 2012 Jan; 104():410-6. PubMed ID: 22133603 [TBL] [Abstract][Full Text] [Related]
5. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047 [TBL] [Abstract][Full Text] [Related]
6. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Saitoh S; Hasunuma T; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354 [TBL] [Abstract][Full Text] [Related]
7. Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process. Geberekidan M; Zhang J; Liu ZL; Bao J Bioprocess Biosyst Eng; 2019 Feb; 42(2):297-304. PubMed ID: 30411143 [TBL] [Abstract][Full Text] [Related]
8. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279 [TBL] [Abstract][Full Text] [Related]
9. Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose. Zhang L; Guo ZP; Ding ZY; Wang ZX; Shi GY Prikl Biokhim Mikrobiol; 2012; 48(2):243-8. PubMed ID: 22586919 [TBL] [Abstract][Full Text] [Related]
11. Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular beta-glucosidases as expressed in Saccharomyces cerevisiae. Machida M; Ohtsuki I; Fukui S; Yamashita I Appl Environ Microbiol; 1988 Dec; 54(12):3147-55. PubMed ID: 3146949 [TBL] [Abstract][Full Text] [Related]
12. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. Lee WH; Jin YS J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766 [TBL] [Abstract][Full Text] [Related]
13. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface. Tokuhiro K; Ishida N; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2008 Jun; 79(3):481-8. PubMed ID: 18443785 [TBL] [Abstract][Full Text] [Related]
14. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Yang F; Yang X; Li Z; Du C; Wang J; Li S Appl Microbiol Biotechnol; 2015 Nov; 99(21):8903-15. PubMed ID: 25957152 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. Shen Y; Zhang Y; Ma T; Bao X; Du F; Zhuang G; Qu Y Bioresour Technol; 2008 Jul; 99(11):5099-103. PubMed ID: 17976983 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. Bae YH; Kang KH; Jin YS; Seo JH J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384 [TBL] [Abstract][Full Text] [Related]
17. Construction of a beta-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis. Kitagawa T; Tokuhiro K; Sugiyama H; Kohda K; Isono N; Hisamatsu M; Takahashi H; Imaeda T Appl Microbiol Biotechnol; 2010 Aug; 87(5):1841-53. PubMed ID: 20467739 [TBL] [Abstract][Full Text] [Related]
18. Characterization of cold adapted and ethanol tolerant β-glucosidase from Bacillus cellulosilyticus and its application for directed hydrolysis of cellobiose to ethanol. Wu J; Geng A; Xie R; Wang H; Sun J Int J Biol Macromol; 2018 Apr; 109():872-879. PubMed ID: 29137993 [TBL] [Abstract][Full Text] [Related]
19. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases. Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313 [TBL] [Abstract][Full Text] [Related]
20. Properties of an intracellular beta-glucosidase purified from the cellobiose-fermenting yeast Candida wickerhamii. Skory CD; Freer SN; Bothast RJ Appl Microbiol Biotechnol; 1996 Nov; 46(4):353-9. PubMed ID: 8987723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]