These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27011330)

  • 41. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis.
    Streif S; Oesterhelt D; Marwan W
    BMC Syst Biol; 2010 Mar; 4():27. PubMed ID: 20298562
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure and RNA-Binding Properties of Lsm Protein from Halobacterium salinarum.
    Fando MS; Mikhaylina AO; Lekontseva NV; Tishchenko SV; Nikulin AD
    Biochemistry (Mosc); 2021 Jul; 86(7):833-842. PubMed ID: 34284708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MpcT is the transducer for membrane potential changes in Halobacterium salinarum.
    Koch MK; Oesterhelt D
    Mol Microbiol; 2005 Mar; 55(6):1681-94. PubMed ID: 15752193
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-effective cultivation of Halobacterium salinarum providing with bacteriorhodopsin production under controlled stress.
    Kalenov SV; Baurina MM; Skladnev DA; Kuznetsov AY
    J Biotechnol; 2016 Sep; 233():211-8. PubMed ID: 27449487
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Identification of collagen-like sequences in proteins from the cell wall of Halobacterium salinarium].
    Kalebina TS; Karpova EV; Kulaev IS
    Mikrobiologiia; 2001; 70(4):574-5. PubMed ID: 11558286
    [No Abstract]   [Full Text] [Related]  

  • 46. Regulation of phosphate uptake via Pst transporters in Halobacterium salinarum R1.
    Furtwängler K; Tarasov V; Wende A; Schwarz C; Oesterhelt D
    Mol Microbiol; 2010 Apr; 76(2):378-92. PubMed ID: 20199599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. OMICS in ecology: systems level analyses of Halobacterium salinarum reveal large-scale temperature-mediated changes and a requirement of CctA for thermotolerance.
    Weng RR; Shu HW; Chin SW; Kao Y; Chen TW; Liao CC; Tsay YG; Ng WV
    OMICS; 2014 Jan; 18(1):65-80. PubMed ID: 24147786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional expression of green fluorescent protein derivatives in Halobacterium salinarum.
    Nomura S; Harada Y
    FEMS Microbiol Lett; 1998 Oct; 167(2):287-93. PubMed ID: 9809429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms of energy transformations.
    Racker E
    Annu Rev Biochem; 1977; 46():1006-14. PubMed ID: 20035
    [No Abstract]   [Full Text] [Related]  

  • 50. Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach.
    Baliga NS; Pan M; Goo YA; Yi EC; Goodlett DR; Dimitrov K; Shannon P; Aebersold R; Ng WV; Hood L
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14913-8. PubMed ID: 12403819
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Agl28 and Agl29 are key components of a Halobacterium salinarum N-glycosylation pathway.
    Vershinin Z; Zaretsky M; Guan Z; Eichler J
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36866517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computer modeling of electron and proton transport in chloroplasts.
    Tikhonov AN; Vershubskii AV
    Biosystems; 2014 Jul; 121():1-21. PubMed ID: 24835748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. G-protein-coupled receptor domain overexpression in Halobacterium salinarum: long-range transmembrane interactions in heptahelical membrane proteins.
    Jaakola VP; Rehn M; Moeller M; Alexiev U; Goldman A; Turner GJ
    Proteins; 2005 Aug; 60(3):412-23. PubMed ID: 15971205
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In Situ Study of the Function of Bacterioruberin in the Dual-Chromophore Photoreceptor Archaerhodopsin-4.
    Sun C; Ding X; Cui H; Yang Y; Chen S; Watts A; Zhao X
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8937-8941. PubMed ID: 29781190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum.
    Storch KF; Rudolph J; Oesterhelt D
    EMBO J; 1999 Mar; 18(5):1146-58. PubMed ID: 10064582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of the bacteriorhodopsin photocycle and proton pumping in whole cells of Halobacterium salinarium.
    Joshi MK; Bose S; Hendler RW
    Biochemistry; 1999 Jul; 38(27):8786-93. PubMed ID: 10393554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolution of membrane bioenergetics.
    Wilson TH; Lin EC
    J Supramol Struct; 1980; 13(4):421-46. PubMed ID: 6453255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative phosphorylation revisited.
    Nath S; Villadsen J
    Biotechnol Bioeng; 2015 Mar; 112(3):429-37. PubMed ID: 25384602
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Life-style changes of a halophilic archaeon analyzed by quantitative proteomics.
    Tebbe A; Schmidt A; Konstantinidis K; Falb M; Bisle B; Klein C; Aivaliotis M; Kellermann J; Siedler F; Pfeiffer F; Lottspeich F; Oesterhelt D
    Proteomics; 2009 Aug; 9(15):3843-55. PubMed ID: 19670246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.