These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27011898)

  • 21. Genetic Diversity and Physiological Performance of Portuguese Wild Beet (Beta vulgaris spp. maritima) from Three Contrasting Habitats.
    Ribeiro IC; Pinheiro C; Ribeiro CM; Veloso MM; Simoes-Costa MC; Evaristo I; Paulo OS; Ricardo CP
    Front Plant Sci; 2016; 7():1293. PubMed ID: 27630646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GIS assessment of the risk of gene flow from Brassica napus to its wild relatives in China.
    Dong JJ; Zhang MG; Wei W; Ma KP; Wang YH
    Environ Monit Assess; 2018 Jun; 190(7):405. PubMed ID: 29907889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic diversity and population structure of wild/weedy eggplant (Solanum insanum, Solanaceae) in southern India: implications for conservation.
    Mutegi E; Snow AA; Rajkumar M; Pasquet R; Ponniah H; Daunay MC; Davidar P
    Am J Bot; 2015 Jan; 102(1):140-8. PubMed ID: 25587156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study.
    Fénart S; Austerlitz F; Cuguen J; Arnaud JF
    Mol Ecol; 2007 Sep; 16(18):3801-13. PubMed ID: 17850547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation.
    Burgarella C; Barnaud A; Kane NA; Jankowski F; Scarcelli N; Billot C; Vigouroux Y; Berthouly-Salazar C
    Front Plant Sci; 2019; 10():4. PubMed ID: 30774638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hidden diversity in wild Beta taxa from Portugal: insights from genome size and ploidy level estimations using flow cytometry.
    Castro S; Romeiras MM; Castro M; Duarte MC; Loureiro J
    Plant Sci; 2013 Jun; 207():72-8. PubMed ID: 23602101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations.
    Halfhill MD; Millwood RJ; Weissinger AK; Warwick SI; Stewart CN
    Theor Appl Genet; 2003 Nov; 107(8):1533-40. PubMed ID: 13679991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fitness correlates of crop transgene flow into weedy populations: a case study of weedy rice in China and other examples.
    Lu BR; Yang X; Ellstrand NC
    Evol Appl; 2016 Aug; 9(7):857-70. PubMed ID: 27468304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistence of sunflower crop traits and fitness in Helianthus petiolaris populations.
    Gutierrez A; Cantamutto M; Poverene M
    Plant Biol (Stuttg); 2011 Sep; 13(5):821-30. PubMed ID: 21815987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication.
    Wang X; Chen L; Ma J
    Genome Biol; 2019 Jan; 20(1):22. PubMed ID: 30700312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives.
    Warschefsky E; Penmetsa RV; Cook DR; von Wettberg EJ
    Am J Bot; 2014 Oct; 101(10):1791-800. PubMed ID: 25326621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower.
    Mercer KL; Andow DA; Wyse DL; Shaw RG
    Ecol Lett; 2007 May; 10(5):383-93. PubMed ID: 17498137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using seed purity data to estimate an average pollen mediated gene flow from crops to wild relatives.
    Lavigne C; Klein EK; Couvet D
    Theor Appl Genet; 2002 Jan; 104(1):139-45. PubMed ID: 12579439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bt crops: predicting effects of escaped transgenes on the fitness of wild plants and their herbivores.
    Letourneau DK; Robinson GS; Hagen JA
    Environ Biosafety Res; 2003; 2(4):219-46. PubMed ID: 15612280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives.
    Iriondo JM; Milla R; Volis S; Rubio de Casas R
    Plant Biol (Stuttg); 2018 Jan; 20 Suppl 1():78-88. PubMed ID: 28976618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consequences of recurrent gene flow from crops to wild relatives.
    Haygood R; Ives AR; Andow DA
    Proc Biol Sci; 2003 Sep; 270(1527):1879-86. PubMed ID: 14561300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating genetic containment strategies for transgenic plants.
    Lee D; Natesan E
    Trends Biotechnol; 2006 Mar; 24(3):109-14. PubMed ID: 16460821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The origin and evolution of a recent agricultural weed: population genetic diversity of weedy populations of sunflower (Helianthus annuus L.) in Spain and France.
    Muller MH; Latreille M; Tollon C
    Evol Appl; 2011 May; 4(3):499-514. PubMed ID: 25567998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene flow, invasiveness, and ecological impact of genetically modified crops.
    Warwick SI; Beckie HJ; Hall LM
    Ann N Y Acad Sci; 2009 Jun; 1168():72-99. PubMed ID: 19566704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does introgression of crop alleles into wild and weedy living populations create cryptic in situ germplasm banks?
    Ellstrand NC
    Mol Ecol; 2018 Jan; 27(1):38-40. PubMed ID: 29396919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.