These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 27011927)
1. The effect of plasma surface treatment on the bioactivity of titanium implant materials (in vitro). Abdelrahim RA; Badr NA; Baroudi K J Int Soc Prev Community Dent; 2016; 6(1):15-21. PubMed ID: 27011927 [TBL] [Abstract][Full Text] [Related]
2. Effect of anodization and alkali-heat treatment on the bioactivity of titanium implant material (an in vitro study). Abdelrahim RA; Badr NA; Baroudi K J Int Soc Prev Community Dent; 2016; 6(3):189-95. PubMed ID: 27382532 [TBL] [Abstract][Full Text] [Related]
3. Promoting bone-like apatite formation on titanium alloys through nanocrystalline tantalum nitride coatings. Xu J; Liu L; Munroe P; Xie ZH J Mater Chem B; 2015 May; 3(19):4082-4094. PubMed ID: 32262630 [TBL] [Abstract][Full Text] [Related]
4. Micro-topography and reactivity of implant surfaces: an in vitro study in simulated body fluid (SBF). Gandolfi MG; Taddei P; Siboni F; Perrotti V; Iezzi G; Piattelli A; Prati C Microsc Microanal; 2015 Feb; 21(1):190-203. PubMed ID: 25667970 [TBL] [Abstract][Full Text] [Related]
5. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620 [TBL] [Abstract][Full Text] [Related]
6. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853 [TBL] [Abstract][Full Text] [Related]
7. In vivo biocompatibility and mechanical study of novel bone-bioactive materials for prosthetic implantation. Zhang XS; Revell PA; Evans SL; Tuke MA; Gregson PJ J Biomed Mater Res; 1999 Aug; 46(2):279-86. PubMed ID: 10380007 [TBL] [Abstract][Full Text] [Related]
8. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830 [TBL] [Abstract][Full Text] [Related]
9. Micro-Nano Surface Characterization and Bioactivity of a Calcium Phosphate-Incorporated Titanium Implant Surface. Zamparini F; Prati C; Generali L; Spinelli A; Taddei P; Gandolfi MG J Funct Biomater; 2021 Jan; 12(1):. PubMed ID: 33430238 [TBL] [Abstract][Full Text] [Related]
10. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy. Yan Y; Chibowski E; Szcześ A Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):207-215. PubMed ID: 27770882 [TBL] [Abstract][Full Text] [Related]
11. Plasma nitriding of titanium alloy: Effect of roughness, hardness, biocompatibility, and bonding with bone cement. Khandaker M; Riahinezhad S; Li Y; Vaughan MB; Sultana F; Morris TL; Phinney L; Hossain K Biomed Mater Eng; 2016 Nov; 27(5):461-474. PubMed ID: 27885994 [TBL] [Abstract][Full Text] [Related]
12. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid. Chen X; Nouri A; Li Y; Lin J; Hodgson PD; Wen C Biotechnol Bioeng; 2008 Oct; 101(2):378-87. PubMed ID: 18454499 [TBL] [Abstract][Full Text] [Related]
13. Surface Characteristics and Bioactivity of Zirconia (Y-TZP) with Different Surface Treatments. Alagiriswamy G; Krishnan CS; Ramakrishnan H; Jayakrishnakumar SK; Mahadevan V; Azhagarasan NS J Pharm Bioallied Sci; 2020 Aug; 12(Suppl 1):S114-S123. PubMed ID: 33149441 [TBL] [Abstract][Full Text] [Related]
14. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. Mendes MW; Ágreda CG; Bressiani AH; Bressiani JC Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():671-7. PubMed ID: 27040264 [TBL] [Abstract][Full Text] [Related]
15. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method. Wu C; Ramaswamy Y; Gale D; Yang W; Xiao K; Zhang L; Yin Y; Zreiqat H Acta Biomater; 2008 May; 4(3):569-76. PubMed ID: 18182336 [TBL] [Abstract][Full Text] [Related]
16. Titanium surface topography after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use. Fais LM; Fernandes-Filho RB; Pereira-da-Silva MA; Vaz LG; Adabo GL J Dent; 2012 Apr; 40(4):265-75. PubMed ID: 22265989 [TBL] [Abstract][Full Text] [Related]
17. Inducing apatite pre-layer on titanium surface through hydrothermal processing for osseointegration. Ansar EB; Ravikumar K; Suresh Babu S; Fernandez FB; Komath M; Basu B; Harikrishna Varma PR Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110019. PubMed ID: 31546429 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation. Michalska J; Sowa M; Piotrowska M; Widziołek M; Tylko G; Dercz G; Socha RP; Osyczka AM; Simka W Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109957. PubMed ID: 31500028 [TBL] [Abstract][Full Text] [Related]
19. In vivo evaluation of cp Ti implants with modified surfaces by laser beam with and without hydroxyapatite chemical deposition and without and with thermal treatment: topographic characterization and histomorphometric analysis in rabbits. Queiroz TP; de Molon RS; Souza FÁ; Margonar R; Thomazini AH; Guastaldi AC; Hochuli-Vieira E Clin Oral Investig; 2017 Mar; 21(2):685-699. PubMed ID: 27530186 [TBL] [Abstract][Full Text] [Related]
20. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Bordji K; Jouzeau JY; Mainard D; Payan E; Netter P; Rie KT; Stucky T; Hage-Ali M Biomaterials; 1996 May; 17(9):929-40. PubMed ID: 8718939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]