These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 27012003)
21. Simultaneous reduction of arsenic and cadmium bioavailability in agriculture soil and their accumulation in Brassica chinensis L. by using minerals. He Y; Lin H; Jin X; Dong Y; Luo M Ecotoxicol Environ Saf; 2020 Jul; 198():110660. PubMed ID: 32361492 [TBL] [Abstract][Full Text] [Related]
22. Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. Lahori AH; Zhang Z; Guo Z; Li R; Mahar A; Awasthi MK; Wang P; Shen F; Kumbhar F; Sial TA; Zhao J; Guo D Ecotoxicol Environ Saf; 2017 Nov; 145():528-538. PubMed ID: 28787614 [TBL] [Abstract][Full Text] [Related]
23. Cadmium Immobilization Potential of Rice Straw-Derived Biochar, Zeolite and Rock Phosphate: Extraction Techniques and Adsorption Mechanism. Bashir S; Rizwan MS; Salam A; Fu Q; Zhu J; Shaaban M; Hu H Bull Environ Contam Toxicol; 2018 May; 100(5):727-732. PubMed ID: 29516140 [TBL] [Abstract][Full Text] [Related]
24. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Bashir S; Hussain Q; Shaaban M; Hu H Chemosphere; 2018 Nov; 211():632-639. PubMed ID: 30098558 [TBL] [Abstract][Full Text] [Related]
25. [Changes of Cd forms on wheat root-soil interface under stress of combined Cd and chlorimuron-ethyl]. Jin CX; Zhou QX; Fan J; Wang JL Ying Yong Sheng Tai Xue Bao; 2007 Jul; 18(7):1498-504. PubMed ID: 17886641 [TBL] [Abstract][Full Text] [Related]
26. Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. He D; Cui J; Gao M; Wang W; Zhou J; Yang J; Wang J; Li Y; Jiang C; Peng Y Sci Total Environ; 2019 Mar; 654():1364-1371. PubMed ID: 30841409 [TBL] [Abstract][Full Text] [Related]
27. Bioaccumulation and translocation of cadmium in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the polluted oasis soil, Northwest of China. Yang Y; Nan Z; Zhao Z; Wang Z; Wang S; Wang X; Jin W; Zhao C J Environ Sci (China); 2011; 23(8):1368-74. PubMed ID: 22128545 [TBL] [Abstract][Full Text] [Related]
28. Chemical and biological assessment of Cd-polluted sediment for land use: The effect of stabilization using chitosan-coated zeolite. Wen J; Zeng G J Environ Manage; 2018 Apr; 212():46-53. PubMed ID: 29427941 [TBL] [Abstract][Full Text] [Related]
29. Altered transfer of heavy metals from soil to Chinese cabbage with film mulching. Li FL; Yuan J; Sheng GD Ecotoxicol Environ Saf; 2012 Mar; 77():1-6. PubMed ID: 22036267 [TBL] [Abstract][Full Text] [Related]
30. Differences of cadmium absorption and accumulation in selected vegetable crops. Ni WZ; Yang XE; Long XX J Environ Sci (China); 2002 Jul; 14(3):399-405. PubMed ID: 12211993 [TBL] [Abstract][Full Text] [Related]
31. ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Aziz Y; Shah GA; Rashid MI Chemosphere; 2019 Feb; 216():564-575. PubMed ID: 30390587 [TBL] [Abstract][Full Text] [Related]
32. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Liu W; Zhou Q; Sun Y; Liu R Environ Pollut; 2009 Jun; 157(6):1961-7. PubMed ID: 19188009 [TBL] [Abstract][Full Text] [Related]
33. The remediation of the lead-polluted garden soil by natural zeolite. Li H; Shi WY; Shao HB; Shao MA J Hazard Mater; 2009 Sep; 169(1-3):1106-11. PubMed ID: 19428181 [TBL] [Abstract][Full Text] [Related]
34. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Qiu Q; Wang Y; Yang Z; Yuan J Food Chem Toxicol; 2011 Sep; 49(9):2260-7. PubMed ID: 21693161 [TBL] [Abstract][Full Text] [Related]
35. Stabilization of Zinc in Agricultural Soil Originated from Commercial Organic Fertilizer by Natural Zeolite. Sun L; Li S; Gong P; Song K; Zhang H; Sun Y; Qin Q; Zhou B; Xue Y Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162234 [TBL] [Abstract][Full Text] [Related]
36. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles. Xu Y; Fang Z; Tsang EP Environ Sci Pollut Res Int; 2016 Oct; 23(19):19164-72. PubMed ID: 27351875 [TBL] [Abstract][Full Text] [Related]
37. [Effects and mechanism of amendments on remediation of Cd-Zn contaminated paddy soil]. Xu MG; Zhang Q; Zeng XB Huan Jing Ke Xue; 2007 Jun; 28(6):1361-6. PubMed ID: 17674750 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous immobilization of As and Cd in a mining site soil using HDTMA-modified zeolite. Wen J; Yan C; Xing L; Wang Q; Yuan L; Hu X Environ Sci Pollut Res Int; 2021 Feb; 28(8):9935-9945. PubMed ID: 33159681 [TBL] [Abstract][Full Text] [Related]
39. Effect of farm yard manure on chemical fractionation of cadmium and its bio-availability to maize crop grown on sewage irrigated coarse textured soil. Khurana MP; Kansal BD J Environ Biol; 2014 Mar; 35(2):431-7. PubMed ID: 24665774 [TBL] [Abstract][Full Text] [Related]
40. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Tang X; Li X; Liu X; Hashmi MZ; Xu J; Brookes PC Chemosphere; 2015 Jan; 119():177-183. PubMed ID: 24992219 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]