BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27012235)

  • 1. A Novel Strategy for Thermostability Improvement of Trypsin Based on N-Glycosylation within the Ω-Loop Region.
    Guo C; Liu Y; Yu H; Du K; Gan Y; Huang H
    J Microbiol Biotechnol; 2016 Jul; 26(7):1163-72. PubMed ID: 27012235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced trypsin thermostability in Pichia pastoris through truncating the flexible region.
    Liu L; Yu H; Du K; Wang Z; Gan Y; Huang H
    Microb Cell Fact; 2018 Oct; 17(1):165. PubMed ID: 30359279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification.
    Hu W; Liu X; Li Y; Liu D; Kuang Z; Qian C; Yao D
    Enzyme Microb Technol; 2017 Feb; 97():82-89. PubMed ID: 28010776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability.
    Liu HL; Doleyres Y; Coutinho PM; Ford C; Reilly PJ
    Protein Eng; 2000 Sep; 13(9):655-9. PubMed ID: 11054460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Deletion of a dynamic surface loop improves thermostability of (R)-selective amine transaminase from Aspergillus terreus].
    Xie D; Lv C; Fang H; Yang W; Hu S; Zhao W; Huang J; Mei L
    Sheng Wu Gong Cheng Xue Bao; 2017 Dec; 33(12):1923-1933. PubMed ID: 29271170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of N-glycosylation recognition sites on the biochemical properties of Aspergillus kawachii alpha-L-arabinofuranosidase 54.
    Koseki T; Miwa Y; Mese Y; Miyanaga A; Fushinobu S; Wakagi T; Shoun H; Matsuzawa H; Hashizume K
    Biochim Biophys Acta; 2006 Sep; 1760(9):1458-64. PubMed ID: 16784813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris.
    Han M; Wang X; Ding H; Jin M; Yu L; Wang J; Yu X
    Enzyme Microb Technol; 2014 Jan; 54():32-7. PubMed ID: 24267565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the catalytic performance of a GH11 xylanase by rational protein engineering.
    Cheng YS; Chen CC; Huang JW; Ko TP; Huang Z; Guo RT
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9503-10. PubMed ID: 26088174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design.
    Wu TH; Chen CC; Cheng YS; Ko TP; Lin CY; Lai HL; Huang TY; Liu JR; Guo RT
    J Biotechnol; 2014 Apr; 175():1-6. PubMed ID: 24518264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of hyper-glycosylated interferon beta analogs: a computational strategy for glycoengineering.
    Samoudi M; Tabandeh F; Minuchehr Z; Ahangari Cohan R; Nouri Inanlou D; Khodabandeh M; Sabery Anvar M
    J Mol Graph Model; 2015 Mar; 56():31-42. PubMed ID: 25544388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving thermostability of papain through structure-based protein engineering.
    Choudhury D; Biswas S; Roy S; Dattagupta JK
    Protein Eng Des Sel; 2010 Jun; 23(6):457-67. PubMed ID: 20304972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two strategies to engineer flexible loops for improved enzyme thermostability.
    Yu H; Yan Y; Zhang C; Dalby PA
    Sci Rep; 2017 Feb; 7():41212. PubMed ID: 28145457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycation improves the thermostability of trypsin and chymotrypsin.
    Pham VT; Ewing E; Kaplan H; Choma C; Hefford MA
    Biotechnol Bioeng; 2008 Oct; 101(3):452-9. PubMed ID: 18470893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of thermostability by increasing rigidity in the finger regions and flexibility in the catalytic pocket area of Pseudoalteromonas porphyrae κ-carrageenase.
    Du Z; Huang X; Li H; Zheng M; Hong T; Li Z; Du X; Jiang Z; Ni H; Li Q; Zhu Y
    World J Microbiol Biotechnol; 2024 May; 40(7):216. PubMed ID: 38802708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the insertion loop around tryptophan 148 in tthe activity of thrombin.
    DiBella EE; Scheraga HA
    Biochemistry; 1996 Apr; 35(14):4427-33. PubMed ID: 8605192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.
    Song L; Tsang A; Sylvestre M
    Biotechnol Bioeng; 2015 Jun; 112(6):1081-91. PubMed ID: 25640404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the structural basis for the difference in thermostability displayed by family 10 xylanases.
    Xie H; Flint J; Vardakou M; Lakey JH; Lewis RJ; Gilbert HJ; Dumon C
    J Mol Biol; 2006 Jun; 360(1):157-67. PubMed ID: 16762367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.