These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 27012499)
1. Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity. Amemiya S; Takao H; Hanaoka S; Ohtomo K Neuroimage; 2016 Jun; 133():331-340. PubMed ID: 27012499 [TBL] [Abstract][Full Text] [Related]
2. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging. Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946 [TBL] [Abstract][Full Text] [Related]
3. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks. Li YC; Huang YA J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126 [TBL] [Abstract][Full Text] [Related]
4. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI. Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936 [TBL] [Abstract][Full Text] [Related]
5. Neuroaging through the Lens of the Resting State Networks. Cieri F; Esposito R Biomed Res Int; 2018; 2018():5080981. PubMed ID: 29568755 [TBL] [Abstract][Full Text] [Related]
6. A NIRS-fMRI study of resting state network. Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670 [TBL] [Abstract][Full Text] [Related]
7. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254 [TBL] [Abstract][Full Text] [Related]
8. Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal. Belloy ME; Naeyaert M; Abbas A; Shah D; Vanreusel V; van Audekerke J; Keilholz SD; Keliris GA; Van der Linden A; Verhoye M Neuroimage; 2018 Oct; 180(Pt B):463-484. PubMed ID: 29454935 [TBL] [Abstract][Full Text] [Related]
9. Inter-subject phase synchronization for exploratory analysis of task-fMRI. Bolt T; Nomi JS; Vij SG; Chang C; Uddin LQ Neuroimage; 2018 Aug; 176():477-488. PubMed ID: 29654878 [TBL] [Abstract][Full Text] [Related]
10. Anticorrelated networks in resting-state fMRI-BOLD data. Liu Y; Huang L; Li M; Zhou Z; Hu D Biomed Mater Eng; 2015; 26 Suppl 1():S1201-11. PubMed ID: 26405879 [TBL] [Abstract][Full Text] [Related]
11. Resting-state fMRI can reliably map neural networks in children. Thomason ME; Dennis EL; Joshi AA; Joshi SH; Dinov ID; Chang C; Henry ML; Johnson RF; Thompson PM; Toga AW; Glover GH; Van Horn JD; Gotlib IH Neuroimage; 2011 Mar; 55(1):165-75. PubMed ID: 21134471 [TBL] [Abstract][Full Text] [Related]
12. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity. Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876 [TBL] [Abstract][Full Text] [Related]
13. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI. Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793 [TBL] [Abstract][Full Text] [Related]
15. Decoupled temporal variability and signal synchronization of spontaneous brain activity in loss of consciousness: An fMRI study in anesthesia. Huang Z; Zhang J; Wu J; Qin P; Wu X; Wang Z; Dai R; Li Y; Liang W; Mao Y; Yang Z; Zhang J; Wolff A; Northoff G Neuroimage; 2016 Jan; 124(Pt A):693-703. PubMed ID: 26343319 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593 [TBL] [Abstract][Full Text] [Related]
17. Resting network is composed of more than one neural pattern: an fMRI study. Lee TW; Northoff G; Wu YT Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572 [TBL] [Abstract][Full Text] [Related]
18. [Functional connectivity analysis of the brain network using resting-state FMRI]. Hayashi T Brain Nerve; 2011 Dec; 63(12):1307-18. PubMed ID: 22147450 [TBL] [Abstract][Full Text] [Related]
19. An automated method for identifying an independent component analysis-based language-related resting-state network in brain tumor subjects for surgical planning. Lu J; Zhang H; Hameed NUF; Zhang J; Yuan S; Qiu T; Shen D; Wu J Sci Rep; 2017 Oct; 7(1):13769. PubMed ID: 29062010 [TBL] [Abstract][Full Text] [Related]
20. Lag structure in resting-state fMRI. Mitra A; Snyder AZ; Hacker CD; Raichle ME J Neurophysiol; 2014 Jun; 111(11):2374-91. PubMed ID: 24598530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]