These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 27012742)
1. Regulation of Caveolin-1 Expression Determines Early Brain Edema After Experimental Focal Cerebral Ischemia. Choi KH; Kim HS; Park MS; Kim JT; Kim JH; Cho KA; Lee MC; Lee HJ; Cho KH Stroke; 2016 May; 47(5):1336-43. PubMed ID: 27012742 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation. Choi KH; Kim HS; Park MS; Lee EB; Lee JK; Kim JT; Kim JH; Lee MC; Lee HJ; Cho KH Oncotarget; 2016 Oct; 7(42):67857-67867. PubMed ID: 27708218 [TBL] [Abstract][Full Text] [Related]
3. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. Gu Y; Zheng G; Xu M; Li Y; Chen X; Zhu W; Tong Y; Chung SK; Liu KJ; Shen J J Neurochem; 2012 Jan; 120(1):147-56. PubMed ID: 22007835 [TBL] [Abstract][Full Text] [Related]
4. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema. Xue Y; Wang X; Wan B; Wang D; Li M; Cheng K; Luo Q; Wang D; Lu Y; Zhu L Cell Commun Signal; 2022 Oct; 20(1):160. PubMed ID: 36253854 [TBL] [Abstract][Full Text] [Related]
7. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. Liu J; Jin X; Liu KJ; Liu W J Neurosci; 2012 Feb; 32(9):3044-57. PubMed ID: 22378877 [TBL] [Abstract][Full Text] [Related]
8. Dl-3-N-Butylphthalide Alleviates the Blood-Brain Barrier Permeability of Focal Cerebral Ischemia Reperfusion in Mice. Li J; Liu Y; Zhang X; Chen R; Zhang L; Xue J; Gao X Neuroscience; 2019 Aug; 413():99-107. PubMed ID: 31247236 [TBL] [Abstract][Full Text] [Related]
9. Electroacupuncture pretreatment attenuates blood‑brain barrier disruption following cerebral ischemia/reperfusion. Zou R; Wu Z; Cui S Mol Med Rep; 2015 Aug; 12(2):2027-34. PubMed ID: 25936438 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. Li Y; Liu B; Zhao T; Quan X; Han Y; Cheng Y; Chen Y; Shen X; Zheng Y; Zhao Y J Nanobiotechnology; 2023 Feb; 21(1):70. PubMed ID: 36855156 [TBL] [Abstract][Full Text] [Related]
11. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Nag S; Venugopalan R; Stewart DJ Acta Neuropathol; 2007 Nov; 114(5):459-69. PubMed ID: 17687559 [TBL] [Abstract][Full Text] [Related]
12. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Tang G; Liu Y; Zhang Z; Lu Y; Wang Y; Huang J; Li Y; Chen X; Gu X; Wang Y; Yang GY Stem Cells; 2014 Dec; 32(12):3150-62. PubMed ID: 25100404 [TBL] [Abstract][Full Text] [Related]
13. Zinc contributes to acute cerebral ischemia-induced blood-brain barrier disruption. Qi Z; Liang J; Pan R; Dong W; Shen J; Yang Y; Zhao Y; Shi W; Luo Y; Ji X; Liu KJ Neurobiol Dis; 2016 Nov; 95():12-21. PubMed ID: 27388935 [TBL] [Abstract][Full Text] [Related]
14. Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury. Nag S; Manias JL; Kapadia A; Stewart DJ Mol Neurobiol; 2017 Aug; 54(6):4232-4242. PubMed ID: 27335031 [TBL] [Abstract][Full Text] [Related]
15. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Gu Y; Dee CM; Shen J Front Biosci (Schol Ed); 2011 Jun; 3(4):1216-31. PubMed ID: 21622267 [TBL] [Abstract][Full Text] [Related]
16. Astrocyte-derived fatty acid-binding protein 7 protects blood-brain barrier integrity through a caveolin-1/MMP signaling pathway following traumatic brain injury. Rui Q; Ni H; Lin X; Zhu X; Li D; Liu H; Chen G Exp Neurol; 2019 Dec; 322():113044. PubMed ID: 31454490 [TBL] [Abstract][Full Text] [Related]
17. Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: signs of blood-brain barrier healing? Badaut J; Ajao DO; Sorensen DW; Fukuda AM; Pellerin L Neuroscience; 2015 Jan; 285():215-26. PubMed ID: 25450954 [TBL] [Abstract][Full Text] [Related]
18. Effects of green tea polyphenols on caveolin-1 of microvessel fragments in rats with cerebral ischemia. Zhang S; Liu Y; Zhao Z; Xue Y Neurol Res; 2010 Nov; 32(9):963-70. PubMed ID: 20444327 [TBL] [Abstract][Full Text] [Related]
19. Normobaric hyperoxia slows blood-brain barrier damage and expands the therapeutic time window for tissue-type plasminogen activator treatment in cerebral ischemia. Liang J; Qi Z; Liu W; Wang P; Shi W; Dong W; Ji X; Luo Y; Liu KJ Stroke; 2015 May; 46(5):1344-1351. PubMed ID: 25804925 [TBL] [Abstract][Full Text] [Related]
20. Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke. Chen YJ; Wallace BK; Yuen N; Jenkins DP; Wulff H; O'Donnell ME Stroke; 2015 Jan; 46(1):237-44. PubMed ID: 25477223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]