These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 27012850)

  • 21. Randomly curved runs interrupted by tumbling: a model for bacterial motion.
    Condat CA; Jäckle J; Menchón SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021909. PubMed ID: 16196606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffusion models for chemotaxis: a statistical analysis of noninteractive unicellular movement.
    Watkins JC; Woessner B
    Math Biosci; 1991 May; 104(2):271-303. PubMed ID: 1804464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal chemotaxis in intermittent migration of animal cells.
    Romanczuk P; Salbreux G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042720. PubMed ID: 25974540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments.
    Bertrand T; Zhao Y; Bénichou O; Tailleur J; Voituriez R
    Phys Rev Lett; 2018 May; 120(19):198103. PubMed ID: 29799236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interplay of chemotaxis and chemokinesis mechanisms in bacterial dynamics.
    D'Orsogna MR; Suchard MA; Chou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021925. PubMed ID: 14525024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directional persistence and the optimality of run-and-tumble chemotaxis.
    Nicolau DV; Armitage JP; Maini PK
    Comput Biol Chem; 2009 Aug; 33(4):269-74. PubMed ID: 19616478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.
    Curk T; Matthäus F; Brill-Karniely Y; Dobnikar J
    Adv Exp Med Biol; 2012; 736():381-96. PubMed ID: 22161341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A stochastic model for directional changes of swimming bacteria.
    Fier G; Hansmann D; Buceta RC
    Soft Matter; 2017 May; 13(18):3385-3394. PubMed ID: 28429013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Closed form modeling of evolutionary rates by exponential Brownian functionals.
    Privault N; Guindon S
    J Math Biol; 2015 Dec; 71(6-7):1387-409. PubMed ID: 25716798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multiple-relaxation-time lattice-boltzmann model for bacterial chemotaxis: effects of initial concentration, diffusion, and hydrodynamic dispersion on traveling bacterial bands.
    Yan Z; Hilpert M
    Bull Math Biol; 2014 Oct; 76(10):2449-75. PubMed ID: 25223537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact.
    Lushnikov PM; Chen N; Alber M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061904. PubMed ID: 19256865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Taxis equations for amoeboid cells.
    Erban R; Othmer HG
    J Math Biol; 2007 Jun; 54(6):847-85. PubMed ID: 17273880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reproduction of bacterial chemotaxis by a non-living self-propelled object.
    Hamano Y; Ikeda K; Odagiri K; Suematsu NJ
    Sci Rep; 2023 May; 13(1):8173. PubMed ID: 37210558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling.
    Xue C
    J Math Biol; 2015 Jan; 70(1-2):1-44. PubMed ID: 24366373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Random walk models in biology.
    Codling EA; Plank MJ; Benhamou S
    J R Soc Interface; 2008 Aug; 5(25):813-34. PubMed ID: 18426776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microswimmers learning chemotaxis with genetic algorithms.
    Hartl B; Hübl M; Kahl G; Zöttl A
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33947812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bayesian inference for stochastic kinetic models using a diffusion approximation.
    Golightly A; Wilkinson DJ
    Biometrics; 2005 Sep; 61(3):781-8. PubMed ID: 16135029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The hydrodynamics of a run-and-tumble bacterium propelled by polymorphic helical flagella.
    Watari N; Larson RG
    Biophys J; 2010 Jan; 98(1):12-7. PubMed ID: 20074512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches.
    Kiselev VY; Leda M; Lobanov AI; Marenduzzo D; Goryachev AB
    J Chem Phys; 2011 Oct; 135(15):155103. PubMed ID: 22029337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of Swimming Speed Leads to a More-Efficient Chemotactic Response to Repellent.
    Karmakar R; Uday Bhaskar RVS; Jesudasan RE; Tirumkudulu MS; Venkatesh KV
    Appl Environ Microbiol; 2016 Feb; 82(4):1205-1214. PubMed ID: 26655753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.