These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 27013219)
21. Fabrication and characterization of novel nano hydroxyapatite/β-tricalcium phosphate scaffolds in three different composition ratios. Ebrahimi M; Pripatnanont P; Monmaturapoj N; Suttapreyasri S J Biomed Mater Res A; 2012 Sep; 100(9):2260-8. PubMed ID: 22499354 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA; Lee SH; Kim WD Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [TBL] [Abstract][Full Text] [Related]
24. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. Strobel LA; Rath SN; Maier AK; Beier JP; Arkudas A; Greil P; Horch RE; Kneser U J Tissue Eng Regen Med; 2014 Mar; 8(3):176-85. PubMed ID: 22740314 [TBL] [Abstract][Full Text] [Related]
25. In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Kim BR; Nguyen TB; Min YK; Lee BT Tissue Eng Part A; 2014 Dec; 20(23-24):3279-89. PubMed ID: 24935525 [TBL] [Abstract][Full Text] [Related]
26. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration. Faruq O; Kim B; Padalhin AR; Lee GH; Lee BT J Biomater Appl; 2017 Oct; 32(4):433-445. PubMed ID: 28944711 [TBL] [Abstract][Full Text] [Related]
27. Biphasic calcium phosphate loading on polycaprolactone/poly(lacto-co-glycolic acid) membranes for improved tensile strength, in vitro biocompatibility, and in vivo tissue regeneration. Franco RA; Sadiasa A; Seo HS; Lee BT J Biomater Appl; 2014 Apr; 28(8):1164-79. PubMed ID: 24014247 [TBL] [Abstract][Full Text] [Related]
28. 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival. Touri M; Moztarzadeh F; Osman NAA; Dehghan MM; Mozafari M Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():236-242. PubMed ID: 29519434 [TBL] [Abstract][Full Text] [Related]
29. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model. Park KW; Yun YP; Kim SE; Song HR Int J Mol Sci; 2015 Nov; 16(11):26738-53. PubMed ID: 26561810 [TBL] [Abstract][Full Text] [Related]
30. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
31. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
32. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
33. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801 [TBL] [Abstract][Full Text] [Related]
34. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N; Pavasant P; Supaphol P J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106 [TBL] [Abstract][Full Text] [Related]
36. Testosterone improves the osteogenic potential of a composite in vitro and in vivo. da Costa KJR; Gala-García A; Passos JJ; Santos VR; Sinisterra RD; Lanza CRM; Cortés ME Cell Tissue Res; 2019 May; 376(2):221-231. PubMed ID: 30635775 [TBL] [Abstract][Full Text] [Related]
37. Effect of zirconia-mullite incorporated biphasic calcium phosphate/biopolymer composite scaffolds for bone tissue engineering. Rittidach T; Tithito T; Suntornsaratoon P; Charoenphandhu N; Thongbunchoo J; Krishnamra N; Tang IM; Pon-On W Biomed Phys Eng Express; 2020 Jul; 6(5):055004. PubMed ID: 33444235 [TBL] [Abstract][Full Text] [Related]
38. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
39. Bioactive fish collagen/polycaprolactone composite nanofibrous scaffolds fabricated by electrospinning for 3D cell culture. Choi DJ; Choi SM; Kang HY; Min HJ; Lee R; Ikram M; Subhan F; Jin SW; Jeong YH; Kwak JY; Yoon S J Biotechnol; 2015 Jul; 205():47-58. PubMed ID: 25617682 [TBL] [Abstract][Full Text] [Related]
40. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]