These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 27013608)
1. Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. Fuchs CJ; Gonzalez JT; Beelen M; Cermak NM; Smith FE; Thelwall PE; Taylor R; Trenell MI; Stevenson EJ; van Loon LJ J Appl Physiol (1985); 2016 Jun; 120(11):1328-34. PubMed ID: 27013608 [TBL] [Abstract][Full Text] [Related]
2. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Gonzalez JT; Fuchs CJ; Smith FE; Thelwall PE; Taylor R; Stevenson EJ; Trenell MI; Cermak NM; van Loon LJ Am J Physiol Endocrinol Metab; 2015 Dec; 309(12):E1032-9. PubMed ID: 26487008 [TBL] [Abstract][Full Text] [Related]
3. Fructose Coingestion Does Not Accelerate Postexercise Muscle Glycogen Repletion. Trommelen J; Beelen M; Pinckaers PJ; Senden JM; Cermak NM; Van Loon LJ Med Sci Sports Exerc; 2016 May; 48(5):907-12. PubMed ID: 26606271 [TBL] [Abstract][Full Text] [Related]
4. Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals. Rosset R; Lecoultre V; Egli L; Cros J; Dokumaci AS; Zwygart K; Boesch C; Kreis R; Schneiter P; Tappy L Am J Clin Nutr; 2017 Mar; 105(3):609-617. PubMed ID: 28100512 [No Abstract] [Full Text] [Related]
5. The use of carbohydrates during exercise as an ergogenic aid. Cermak NM; van Loon LJ Sports Med; 2013 Nov; 43(11):1139-55. PubMed ID: 23846824 [TBL] [Abstract][Full Text] [Related]
6. Postexercise Glucose-Fructose Coingestion Augments Cycling Capacity During Short-Term and Overnight Recovery From Exhaustive Exercise, Compared With Isocaloric Glucose. Gray EA; Green TA; Betts JA; Gonzalez JT Int J Sport Nutr Exerc Metab; 2020 Jan; 30(1):54-61. PubMed ID: 31715584 [TBL] [Abstract][Full Text] [Related]
7. Fructose co-ingestion to increase carbohydrate availability in athletes. Fuchs CJ; Gonzalez JT; van Loon LJC J Physiol; 2019 Jul; 597(14):3549-3560. PubMed ID: 31166604 [TBL] [Abstract][Full Text] [Related]
8. Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts? Gonzalez JT; Fuchs CJ; Betts JA; van Loon LJ Nutrients; 2017 Mar; 9(4):. PubMed ID: 28358334 [TBL] [Abstract][Full Text] [Related]
9. Postexercise muscle glycogen synthesis with combined glucose and fructose ingestion. Wallis GA; Hulston CJ; Mann CH; Roper HP; Tipton KD; Jeukendrup AE Med Sci Sports Exerc; 2008 Oct; 40(10):1789-94. PubMed ID: 18799989 [TBL] [Abstract][Full Text] [Related]
10. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Casey A; Mann R; Banister K; Fox J; Morris PG; Macdonald IA; Greenhaff PL Am J Physiol Endocrinol Metab; 2000 Jan; 278(1):E65-75. PubMed ID: 10644538 [TBL] [Abstract][Full Text] [Related]
11. Liver glycogen metabolism during and after prolonged endurance-type exercise. Gonzalez JT; Fuchs CJ; Betts JA; van Loon LJ Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E543-53. PubMed ID: 27436612 [TBL] [Abstract][Full Text] [Related]
12. Postexercise muscle glycogen synthesis with glucose, galactose, and combined galactose-glucose ingestion. Podlogar T; Shad BJ; Seabright AP; Odell OJ; Lord SO; Civil R; Salgueiro RB; Shepherd EL; Lalor PF; Elhassan YS; Lai YC; Rowlands DS; Wallis GA Am J Physiol Endocrinol Metab; 2023 Dec; 325(6):E672-E681. PubMed ID: 37850935 [TBL] [Abstract][Full Text] [Related]
13. Liver and muscle glycogen repletion using 13C magnetic resonance spectroscopy following ingestion of maltodextrin, galactose, protein and amino acids. Detko E; O'Hara JP; Thelwall PE; Smith FE; Jakovljevic DG; King RF; Trenell MI Br J Nutr; 2013 Sep; 110(5):848-55. PubMed ID: 23388155 [TBL] [Abstract][Full Text] [Related]