These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27013678)

  • 1. Propagating Neural Source Revealed by Doppler Shift of Population Spiking Frequency.
    Zhang M; Shivacharan RS; Chiang CC; Gonzalez-Reyes LE; Durand DM
    J Neurosci; 2016 Mar; 36(12):3495-505. PubMed ID: 27013678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow moving neural source in the epileptic hippocampus can mimic progression of human seizures.
    Chiang CC; Wei X; Ananthakrishnan AK; Shivacharan RS; Gonzalez-Reyes LE; Zhang M; Durand DM
    Sci Rep; 2018 Jan; 8(1):1564. PubMed ID: 29367722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high aspect ratio microelectrode array for mapping neural activity in vitro.
    Kibler AB; Jamieson BG; Durand DM
    J Neurosci Methods; 2012 Mar; 204(2):296-305. PubMed ID: 22179041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wireless transmission neural interface system for unconstrained non-human primates.
    Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V
    J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition and mapping of generalized spike-wave complexes.
    Rodin E
    Clin Neurophysiol; 1999 Nov; 110(11):1868-75. PubMed ID: 10576481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hardware considerations of a spatial filter for decorrelating high-density multielectrode neural recordings.
    Thomson KE; Oweiss KG
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1244-7. PubMed ID: 17946884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal source localization with tetrodes: experimental verification.
    Lee CW; King CE; Wu SC; Swindlehurst AL; Nenadic Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():67-70. PubMed ID: 22254252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The utility of multichannel local field potentials for brain-machine interfaces.
    Hwang EJ; Andersen RA
    J Neural Eng; 2013 Aug; 10(4):046005. PubMed ID: 23744624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves.
    Chiovini B; Turi GF; Katona G; Kaszás A; Pálfi D; Maák P; Szalay G; Szabó MF; Szabó G; Szadai Z; Káli S; Rózsa B
    Neuron; 2014 May; 82(4):908-24. PubMed ID: 24853946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic evidence that benign epileptiform transients of sleep are traveling, rotating hippocampal spikes.
    Wennberg R; Tarazi A; Zumsteg D; Garcia Dominguez L
    Clin Neurophysiol; 2020 Dec; 131(12):2915-2925. PubMed ID: 32988727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow-Wave Recordings From Micro-Sized Neural Clusters Using Multiwell Type Microelectrode Arrays.
    Joo S; Nam Y
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):403-410. PubMed ID: 29993399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural activity propagation in an unfolded hippocampal preparation with a penetrating micro-electrode array.
    Zhang M; Kibler AB; Gonzales-Reyes LE; Durand DM
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25868081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seizure modulation with applied electric fields in chronically implanted animals.
    Sunderam S; Chernyy N; Mason J; Peixoto N; Weinstein SL; Schiff SJ; Gluckman BJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1612-5. PubMed ID: 17946910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling.
    Chiang CC; Shivacharan RS; Wei X; Gonzalez-Reyes LE; Durand DM
    J Physiol; 2019 Jan; 597(1):249-269. PubMed ID: 30295923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial directed coherence analysis of intracranial neural spikes in epilepsy patients.
    Chan HL; Tsai YT; Wang YC; Ju JH; Chang BL; Wu T; Lee ST; Lin BS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5174-7. PubMed ID: 23367094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.