These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27013678)

  • 21. In vivo validation of the electronic depth control probes.
    Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I
    Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sharp Wave Ripples during Visual Exploration in the Primate Hippocampus.
    Leonard TK; Mikkila JM; Eskandar EN; Gerrard JL; Kaping D; Patel SR; Womelsdorf T; Hoffman KL
    J Neurosci; 2015 Nov; 35(44):14771-82. PubMed ID: 26538648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A cortical recording platform utilizing microECoG electrode arrays.
    Kim J; Wilson JA; Williams JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A compact architecture for three-dimensional neural microelectrode arrays.
    Perlin GE; Wise KD
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5806-9. PubMed ID: 19164037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.
    Frauscher B; von Ellenrieder N; Ferrari-Marinho T; Avoli M; Dubeau F; Gotman J
    Brain; 2015 Jun; 138(Pt 6):1629-41. PubMed ID: 25792528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast wave propagation in auditory cortex of an awake cat using a chronic microelectrode array.
    Witte RS; Rousche PJ; Kipke DR
    J Neural Eng; 2007 Jun; 4(2):68-78. PubMed ID: 17409481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracranial neuronal ensemble recordings and analysis in epilepsy.
    Tóth E; Fabó D; Entz L; Ulbert I; Erőss L
    J Neurosci Methods; 2016 Feb; 260():261-9. PubMed ID: 26453987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The spiking component of oscillatory extracellular potentials in the rat hippocampus.
    Schomburg EW; Anastassiou CA; Buzsáki G; Koch C
    J Neurosci; 2012 Aug; 32(34):11798-811. PubMed ID: 22915121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modular 256-channel micro electrode array platform for in vitro and in vivo neural stimulation and recording: BioMEA.
    Charvet G; Billoint O; Gharbi S; Heuschkel M; Georges C; Kauffmann T; Pellissier A; Yvert B; Guillemaud R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1804-7. PubMed ID: 21095937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term seizure monitoring using a 256 contact dense array system.
    Thompson P; Rae J; Weber L; Pearson C; Goldeshtein Z; Holmes MD
    Am J Electroneurodiagnostic Technol; 2008 Jun; 48(2):93-106. PubMed ID: 18680897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multivariate regression methods for estimating velocity of ictal discharges from human microelectrode recordings.
    Liou JY; Smith EH; Bateman LM; McKhann GM; Goodman RR; Greger B; Davis TS; Kellis SS; House PA; Schevon CA
    J Neural Eng; 2017 Aug; 14(4):044001. PubMed ID: 28332484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of initial slow waves (ISWs) at the seizure onset in patients with drug resistant temporal lobe epilepsy.
    Bragin A; Claeys P; Vonck K; Van Roost D; Wilson C; Boon P; Engel J
    Epilepsia; 2007 Oct; 48(10):1883-94. PubMed ID: 17559569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous neural activity of the anterodorsal lobe and entopeduncular nucleus in adult zebrafish: a putative homologue of hippocampal sharp waves.
    Vargas R; Thorsteinsson H; Karlsson KA
    Behav Brain Res; 2012 Apr; 229(1):10-20. PubMed ID: 22207154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe.
    Fekete Z; Csernai M; Kocsis K; Horváth ÁC; Pongrácz A; Barthó P
    J Neural Eng; 2017 Jun; 14(3):034001. PubMed ID: 28198704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrical activity of the cingulate cortex. I. Generating mechanisms and relations to behavior.
    Leung LW; Borst JG
    Brain Res; 1987 Mar; 407(1):68-80. PubMed ID: 3580857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-frequency changes during interictal spikes detected by time-frequency analysis.
    Jacobs J; Kobayashi K; Gotman J
    Clin Neurophysiol; 2011 Jan; 122(1):32-42. PubMed ID: 20599418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multimodal sensing device for fluorescence imaging and electrical potential measurement of neural activities in a mouse deep brain.
    Ohta J; Tagawa A; Minami H; Noda T; Sasagawa K; Tokuda T; Hatanaka Y; Ishikawa Y; Tamura H; Shiosaka S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5887-90. PubMed ID: 19964881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo.
    Subramanian M; Chiang CC; Couturier NH; Durand DM
    Exp Neurol; 2022 Aug; 354():114109. PubMed ID: 35551899
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.