These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 27013739)
1. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis. Corradetti B; Taraballi F; Minardi S; Van Eps J; Cabrera F; Francis LW; Gazze SA; Ferrari M; Weiner BK; Tasciotti E Stem Cells Transl Med; 2016 May; 5(5):670-82. PubMed ID: 27013739 [TBL] [Abstract][Full Text] [Related]
2. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258 [TBL] [Abstract][Full Text] [Related]
3. Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model. Ding J; Chen B; Lv T; Liu X; Fu X; Wang Q; Yan L; Kang N; Cao Y; Xiao R Stem Cells Transl Med; 2016 Aug; 5(8):1079-89. PubMed ID: 27280797 [TBL] [Abstract][Full Text] [Related]
4. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells. Sawatjui N; Damrongrungruang T; Leeanansaksiri W; Jearanaikoon P; Hongeng S; Limpaiboon T Mater Sci Eng C Mater Biol Appl; 2015; 52():90-6. PubMed ID: 25953544 [TBL] [Abstract][Full Text] [Related]
5. A chondromimetic microsphere for in situ spatially controlled chondrogenic differentiation of human mesenchymal stem cells. Ansboro S; Hayes JS; Barron V; Browne S; Howard L; Greiser U; Lalor P; Shannon F; Barry FP; Pandit A; Murphy JM J Control Release; 2014 Apr; 179():42-51. PubMed ID: 24491910 [TBL] [Abstract][Full Text] [Related]
6. Directing chondrogenesis of stem cells with specific blends of cellulose and silk. Singh N; Rahatekar SS; Koziol KK; Ng TS; Patil AJ; Mann S; Hollander AP; Kafienah W Biomacromolecules; 2013 May; 14(5):1287-98. PubMed ID: 23534615 [TBL] [Abstract][Full Text] [Related]
7. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering. Recha-Sancho L; Semino CE PLoS One; 2016; 11(6):e0157603. PubMed ID: 27315119 [TBL] [Abstract][Full Text] [Related]
8. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Levett PA; Melchels FP; Schrobback K; Hutmacher DW; Malda J; Klein TJ Acta Biomater; 2014 Jan; 10(1):214-23. PubMed ID: 24140603 [TBL] [Abstract][Full Text] [Related]
9. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Reppel L; Schiavi J; Charif N; Leger L; Yu H; Pinzano A; Henrionnet C; Stoltz JF; Bensoussan D; Huselstein C Stem Cell Res Ther; 2015 Dec; 6():260. PubMed ID: 26718750 [TBL] [Abstract][Full Text] [Related]
10. In vitro cartilage construct generation from silk fibroin- chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition. Agrawal P; Pramanik K; Biswas A; Ku Patra R J Biomed Mater Res A; 2018 Feb; 106(2):397-407. PubMed ID: 28960800 [TBL] [Abstract][Full Text] [Related]
11. A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold. Mohan N; Nair PD Tissue Eng Part A; 2010 Feb; 16(2):373-84. PubMed ID: 19566439 [TBL] [Abstract][Full Text] [Related]
12. Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution. Pereira RC; Scaranari M; Benelli R; Strada P; Reis RL; Cancedda R; Gentili C Tissue Eng Part A; 2013 Jun; 19(11-12):1476-88. PubMed ID: 23360471 [TBL] [Abstract][Full Text] [Related]
13. Scaffolds for Controlled Release of Cartilage Growth Factors. Morille M; Venier-Julienne MC; Montero-Menei CN Methods Mol Biol; 2015; 1340():171-80. PubMed ID: 26445838 [TBL] [Abstract][Full Text] [Related]
14. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259 [TBL] [Abstract][Full Text] [Related]
15. Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. Moura CS; Silva JC; Faria S; Fernandes PR; da Silva CL; Cabral JMS; Linhardt R; Bártolo PJ; Ferreira FC J Biosci Bioeng; 2020 Jun; 129(6):756-764. PubMed ID: 32107152 [TBL] [Abstract][Full Text] [Related]
16. Compare the effects of chondrogenesis by culture of human mesenchymal stem cells with various type of the chondroitin sulfate C. Chen WC; Yao CL; Chu IM; Wei YH J Biosci Bioeng; 2011 Feb; 111(2):226-31. PubMed ID: 21035392 [TBL] [Abstract][Full Text] [Related]
17. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-ε-caprolactone scaffolds. Schagemann JC; Paul S; Casper ME; Rohwedel J; Kramer J; Kaps C; Mittelstaedt H; Fehr M; Reinholz GG J Biomed Mater Res A; 2013 Jun; 101(6):1620-8. PubMed ID: 23184542 [TBL] [Abstract][Full Text] [Related]
18. Effect of chondroitin sulphate C on the in vitro and in vivo chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds. Chen WC; Wei YH; Chu IM; Yao CL J Tissue Eng Regen Med; 2013 Aug; 7(8):665-72. PubMed ID: 22408003 [TBL] [Abstract][Full Text] [Related]
19. Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-beta 3 complexed with chondroitin sulfate. Park JS; Yang HJ; Woo DG; Yang HN; Na K; Park KH J Biomed Mater Res A; 2010 Feb; 92(2):806-16. PubMed ID: 19280636 [TBL] [Abstract][Full Text] [Related]
20. Preparation of Scaffold-Free Tissue-Engineered Constructs Derived from Human Synovial Mesenchymal Stem Cells Under Low Oxygen Tension Enhances Their Chondrogenic Differentiation Capacity. Yasui Y; Chijimatsu R; Hart DA; Koizumi K; Sugita N; Shimomura K; Myoui A; Yoshikawa H; Nakamura N Tissue Eng Part A; 2016 Mar; 22(5-6):490-500. PubMed ID: 26974507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]