These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27013953)

  • 1. Cortical Spectral Activity and Connectivity during Active and Viewed Arm and Leg Movement.
    Kline JE; Huang HJ; Snyder KL; Ferris DP
    Front Neurosci; 2016; 10():91. PubMed ID: 27013953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury.
    Zhou R; Alvarado L; Kim S; Chong SL; Mushahwar VK
    J Neurophysiol; 2017 Oct; 118(4):2507-2519. PubMed ID: 28701544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.
    Sasada S; Tazoe T; Nakajima T; Futatsubashi G; Ohtsuka H; Suzuki S; Zehr EP; Komiyama T
    J Neurophysiol; 2016 Apr; 115(4):2065-75. PubMed ID: 26961103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks.
    Zehr EP; Balter JE; Ferris DP; Hundza SR; Loadman PM; Stoloff RH
    J Physiol; 2007 Jul; 582(Pt 1):209-27. PubMed ID: 17463036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional anatomy of the mental representation of upper extremity movements in healthy subjects.
    Stephan KM; Fink GR; Passingham RE; Silbersweig D; Ceballos-Baumann AO; Frith CD; Frackowiak RS
    J Neurophysiol; 1995 Jan; 73(1):373-86. PubMed ID: 7714579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocortical activity is coupled to gait cycle phase during treadmill walking.
    Gwin JT; Gramann K; Makeig S; Ferris DP
    Neuroimage; 2011 Jan; 54(2):1289-96. PubMed ID: 20832484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of cerebral cortical potentials associated with voluntary movements in monkey and man.
    Pieper CF; Goldring S; Jenny AB; McMahon JP
    Electroencephalogr Clin Neurophysiol; 1980 Mar; 48(3):266-92. PubMed ID: 6153347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural coupling between the arms and legs during rhythmic locomotor-like cycling movement.
    Balter JE; Zehr EP
    J Neurophysiol; 2007 Feb; 97(2):1809-18. PubMed ID: 17065245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Are Interlimb Interactions Disturbed in Patients with Parkinson's Disease: a Study in Unloading Condition?].
    Solopova IA; Selionov VA; Zhvansky DS; Karabanov AV
    Fiziol Cheloveka; 2016 Sep; 42(5):73-83. PubMed ID: 29932551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhythmic arm movements are less affected than discrete ones after a stroke.
    Leconte P; Orban de Xivry JJ; Stoquart G; Lejeune T; Ronsse R
    Exp Brain Res; 2016 Jun; 234(6):1403-17. PubMed ID: 26749181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease.
    Herz DM; Siebner HR; Hulme OJ; Florin E; Christensen MS; Timmermann L
    Neuroimage; 2014 Apr; 90():15-23. PubMed ID: 24269570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain Network Connectivity and Topological Analysis During Voluntary Arm Movements.
    Storti SF; Formaggio E; Manganotti P; Menegaz G
    Clin EEG Neurosci; 2016 Oct; 47(4):276-290. PubMed ID: 26251456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interlimb interactions during cyclic in-phase and antiphased movements of arms and legs and their dependence on afferent influences].
    Selionov VA; Solopova IA; ZhvanskiÄ­ DS; Grishin AA
    Fiziol Cheloveka; 2014; 40(4):65-77. PubMed ID: 25707220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas.
    Kermadi I; Liu Y; Rouiller EM
    Somatosens Mot Res; 2000; 17(3):255-71. PubMed ID: 10994596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Egomotion-related visual areas respond to active leg movements.
    Serra C; Galletti C; Di Marco S; Fattori P; Galati G; Sulpizio V; Pitzalis S
    Hum Brain Mapp; 2019 Aug; 40(11):3174-3191. PubMed ID: 30924264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability.
    Zehr EP; Klimstra M; Johnson EA; Carroll TJ
    Neurosci Lett; 2007 May; 419(1):10-4. PubMed ID: 17452078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes.
    Zehr EP; Kido A
    J Physiol; 2001 Dec; 537(Pt 3):1033-45. PubMed ID: 11744775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amble Gait EEG Points at Complementary Cortical Networks Underlying Stereotypic Multi-Limb Co-ordination.
    Weersink JB; Maurits NM; de Jong BM
    Front Hum Neurosci; 2021; 15():691482. PubMed ID: 34413729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.