These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27014089)

  • 61. Docosahexaenoic acid domains: the ultimate non-raft membrane domain.
    Wassall SR; Stillwell W
    Chem Phys Lipids; 2008 May; 153(1):57-63. PubMed ID: 18343224
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice.
    Hooijmans CR; Van der Zee CE; Dederen PJ; Brouwer KM; Reijmer YD; van Groen T; Broersen LM; Lütjohann D; Heerschap A; Kiliaan AJ
    Neurobiol Dis; 2009 Mar; 33(3):482-98. PubMed ID: 19130883
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Presenilin 1 modifies lipid raft composition of neuronal membranes.
    Eckert GP; Müller WE
    Biochem Biophys Res Commun; 2009 May; 382(4):673-7. PubMed ID: 19292975
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.
    Wang Z; Schey KL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8349-60. PubMed ID: 26747763
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease.
    Bascoul-Colombo C; Guschina IA; Maskrey BH; Good M; O'Donnell VB; Harwood JL
    Biochim Biophys Acta; 2016 Jun; 1861(6):524-37. PubMed ID: 26968097
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lipid rafts are primary mediators of amyloid oxidative attack on plasma membrane.
    Zampagni M; Evangelisti E; Cascella R; Liguri G; Becatti M; Pensalfini A; Uberti D; Cenini G; Memo M; Bagnoli S; Nacmias B; Sorbi S; Cecchi C
    J Mol Med (Berl); 2010 Jun; 88(6):597-608. PubMed ID: 20217034
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease.
    Collins JM; King AE; Woodhouse A; Kirkcaldie MT; Vickers JC
    Exp Neurol; 2015 May; 267():219-29. PubMed ID: 25747037
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparative study of the effects of phosphatidylcholine rich in DHA and EPA on Alzheimer's disease and the possible mechanisms in CHO-APP/PS1 cells and SAMP8 mice.
    Che H; Zhou M; Zhang T; Zhang L; Ding L; Yanagita T; Xu J; Xue C; Wang Y
    Food Funct; 2018 Jan; 9(1):643-654. PubMed ID: 29292421
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Brain membrane cholesterol domains, aging and amyloid beta-peptides.
    Wood WG; Schroeder F; Igbavboa U; Avdulov NA; Chochina SV
    Neurobiol Aging; 2002; 23(5):685-94. PubMed ID: 12392774
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Targeting ADAM10 to lipid rafts in neuroblastoma SH-SY5Y cells impairs amyloidogenic processing of the amyloid precursor protein.
    Harris B; Pereira I; Parkin E
    Brain Res; 2009 Nov; 1296():203-15. PubMed ID: 19679113
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High dietary consumption of trans fatty acids decreases brain docosahexaenoic acid but does not alter amyloid-beta and tau pathologies in the 3xTg-AD model of Alzheimer's disease.
    Phivilay A; Julien C; Tremblay C; Berthiaume L; Julien P; Giguère Y; Calon F
    Neuroscience; 2009 Mar; 159(1):296-307. PubMed ID: 19135506
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cholesterol-induced astrocyte activation is associated with increased amyloid precursor protein expression and processing.
    Avila-Muñoz E; Arias C
    Glia; 2015 Nov; 63(11):2010-2022. PubMed ID: 26096015
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ginsenoside Rh2 promotes nonamyloidgenic cleavage of amyloid precursor protein via a cholesterol-dependent pathway.
    Qiu J; Li W; Feng SH; Wang M; He ZY
    Genet Mol Res; 2014 May; 13(2):3586-98. PubMed ID: 24854439
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The nutritional significance of lipid rafts.
    Yaqoob P
    Annu Rev Nutr; 2009; 29():257-82. PubMed ID: 19400697
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lysolipids regulate raft size distribution.
    Krasnobaev VD; Galimzyanov TR; Akimov SA; Batishchev OV
    Front Mol Biosci; 2022; 9():1021321. PubMed ID: 36275621
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rafts, Nanoparticles and Neural Disease.
    Gulati V; Wallace R
    Nanomaterials (Basel); 2012 Aug; 2(3):217-250. PubMed ID: 28348305
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Complex and multidimensional lipid raft alterations in a murine model of Alzheimer's disease.
    Chadwick W; Brenneman R; Martin B; Maudsley S
    Int J Alzheimers Dis; 2010 Dec; 2010():604792. PubMed ID: 21151659
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design of pH-Degradable Polymer-Lipid Amphiphiles Using a Ketal-Functionalized RAFT Chain Transfer Agent.
    De Vrieze J; Van Herck S; Nuhn L; De Geest BG
    Macromol Rapid Commun; 2021 Jan; 42(2):e2000696. PubMed ID: 33480114
    [No Abstract]   [Full Text] [Related]  

  • 79. Erratum to "Effects of Probiotic Supplementation on Short Chain Fatty Acids in the AppNL-G-F Mouse Model of Alzheimer's Disease".
    J Alzheimers Dis; 2022; 86(2):941. PubMed ID: 35275554
    [No Abstract]   [Full Text] [Related]  

  • 80. Modeling Alzheimer's disease: considerations for a better translational and replicable mouse model.
    Cho JD; Yang M; Santa-Maria I
    Neural Regen Res; 2022 Nov; 17(11):2448-2449. PubMed ID: 35535894
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.