These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 27014218)
1. CRP Is an Activator of Yersinia pestis Biofilm Formation that Operates via a Mechanism Involving gmhA and waaAE-coaD. Liu L; Fang H; Yang H; Zhang Y; Han Y; Zhou D; Yang R Front Microbiol; 2016; 7():295. PubMed ID: 27014218 [TBL] [Abstract][Full Text] [Related]
2. Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Darby C; Ananth SL; Tan L; Hinnebusch BJ Infect Immun; 2005 Nov; 73(11):7236-42. PubMed ID: 16239518 [TBL] [Abstract][Full Text] [Related]
3. Autoregulation of PhoP/PhoQ and positive regulation of the cyclic AMP receptor protein-cyclic AMP complex by PhoP in Yersinia pestis. Zhang Y; Wang L; Han Y; Yan Y; Tan Y; Zhou L; Cui Y; Du Z; Wang X; Bi Y; Yang H; Song Y; Zhang P; Zhou D; Yang R J Bacteriol; 2013 Mar; 195(5):1022-30. PubMed ID: 23264579 [TBL] [Abstract][Full Text] [Related]
4. CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA. Willias SP; Chauhan S; Lo CC; Chain PS; Motin VL PLoS One; 2015; 10(8):e0135481. PubMed ID: 26305456 [TBL] [Abstract][Full Text] [Related]
5. CRP acts as a transcriptional repressor of the YPO1635-phoPQ-YPO1632 operon in Yersinia pestis. Zhang Y; Sun F; Yang H; Liu L; Ni B; Huang X; Yang R; Zhou D Curr Microbiol; 2015 Mar; 70(3):398-403. PubMed ID: 25413606 [TBL] [Abstract][Full Text] [Related]
6. BfvR, an AraC-Family Regulator, Controls Biofilm Formation and pH6 Antigen Production in Opposite Ways in Fang H; Liu L; Zhang Y; Yang H; Yan Y; Ding X; Han Y; Zhou D; Yang R Front Cell Infect Microbiol; 2018; 8():347. PubMed ID: 30333962 [TBL] [Abstract][Full Text] [Related]
7. CsrA-Mediated Translational Activation of the Silva-Rohwer AR; Held K; Yakhnin H; Babitzke P; Vadyvaloo V J Bacteriol; 2023 Jun; 205(6):e0010523. PubMed ID: 37191545 [TBL] [Abstract][Full Text] [Related]
8. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Liu L; Fang H; Yang H; Zhang Y; Han Y; Zhou D; Yang R Open Biol; 2016 Mar; 6(3):. PubMed ID: 26984293 [TBL] [Abstract][Full Text] [Related]
9. HmsB enhances biofilm formation in Yersinia pestis. Fang N; Qu S; Yang H; Fang H; Liu L; Zhang Y; Wang L; Han Y; Zhou D; Yang R Front Microbiol; 2014; 5():685. PubMed ID: 25566205 [TBL] [Abstract][Full Text] [Related]
11. RcsAB is a major repressor of Yersinia biofilm development through directly acting on hmsCDE, hmsT, and hmsHFRS. Fang N; Yang H; Fang H; Liu L; Zhang Y; Wang L; Han Y; Zhou D; Yang R Sci Rep; 2015 Apr; 5():9566. PubMed ID: 25828910 [TBL] [Abstract][Full Text] [Related]
12. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Bozue J; Mou S; Moody KL; Cote CK; Trevino S; Fritz D; Worsham P Microb Pathog; 2011 Jun; 50(6):314-21. PubMed ID: 21320584 [TBL] [Abstract][Full Text] [Related]
13. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. Liu Z; Gao X; Wang H; Fang H; Yan Y; Liu L; Chen R; Zhou D; Yang R; Han Y BMC Microbiol; 2016 Aug; 16(1):176. PubMed ID: 27492011 [TBL] [Abstract][Full Text] [Related]
14. Role of the PhoP-PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract. Vadyvaloo V; Viall AK; Jarrett CO; Hinz AK; Sturdevant DE; Joseph Hinnebusch B Microbiology (Reading); 2015 Jun; 161(6):1198-1210. PubMed ID: 25804213 [TBL] [Abstract][Full Text] [Related]
15. The Diverse Roles of the Global Transcriptional Regulator PhoP in the Lifecycle of Fukuto HS; Viboud GI; Vadyvaloo V Pathogens; 2020 Dec; 9(12):. PubMed ID: 33322274 [No Abstract] [Full Text] [Related]
16. Structural characterization of lipo-oligosaccharide (LOS) from Yersinia pestis: regulation of LOS structure by the PhoPQ system. Hitchen PG; Prior JL; Oyston PC; Panico M; Wren BW; Titball RW; Morris HR; Dell A Mol Microbiol; 2002 Jun; 44(6):1637-50. PubMed ID: 12067350 [TBL] [Abstract][Full Text] [Related]
17. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut. Vadyvaloo V; Hinz AK PLoS One; 2015; 10(9):e0137508. PubMed ID: 26348850 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional Regulation Between the Two Global Regulators RovA and CRP in Yersinia pestis biovar Microtus. Liu L; Fang H; Ding Y; Zheng Y; Cai L; Zheng S; Zhang Y Curr Microbiol; 2018 Dec; 75(12):1634-1641. PubMed ID: 30291406 [TBL] [Abstract][Full Text] [Related]
19. Interplays of mutations in Xiao L; Qi Z; Song K; Lv R; Chen R; Zhao H; Wu H; Li C; Xin Y; Jin Y; Li X; Xu X; Tan Y; Du Z; Cui Y; Zhang X; Yang R; Zhao X; Song Y Front Cell Infect Microbiol; 2023; 13():1174510. PubMed ID: 37305418 [TBL] [Abstract][Full Text] [Related]
20. Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. Erickson DL; Jarrett CO; Wren BW; Hinnebusch BJ J Bacteriol; 2006 Feb; 188(3):1113-9. PubMed ID: 16428415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]