These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 27014218)
21. Transcriptional regulation of Yersinia pestis biofilm formation. Liu L; Zheng S Microb Pathog; 2019 Jun; 131():212-217. PubMed ID: 30980880 [TBL] [Abstract][Full Text] [Related]
22. Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. Erickson DL; Jarrett CO; Callison JA; Fischer ER; Hinnebusch BJ J Bacteriol; 2008 Dec; 190(24):8163-70. PubMed ID: 18931111 [TBL] [Abstract][Full Text] [Related]
23. Differential regulation of the hmsCDE operon in Yersinia pestis and Yersinia pseudotuberculosis by the Rcs phosphorelay system. Guo XP; Ren GX; Zhu H; Mao XJ; Sun YC Sci Rep; 2015 Feb; 5():8412. PubMed ID: 25672461 [TBL] [Abstract][Full Text] [Related]
24. Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. Zhou D; Han Y; Qin L; Chen Z; Qiu J; Song Y; Li B; Wang J; Guo Z; Du Z; Wang X; Yang R FEMS Microbiol Lett; 2005 Sep; 250(1):85-95. PubMed ID: 16061330 [TBL] [Abstract][Full Text] [Related]
26. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Kirillina O; Fetherston JD; Bobrov AG; Abney J; Perry RD Mol Microbiol; 2004 Oct; 54(1):75-88. PubMed ID: 15458406 [TBL] [Abstract][Full Text] [Related]
27. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis. Ren GX; Fan S; Guo XP; Chen S; Sun YC Front Microbiol; 2016; 7():821. PubMed ID: 27375563 [TBL] [Abstract][Full Text] [Related]
28. [Regulation of c-di-GMP metabolism and biofilm formation in Yersinia pestis]. Zhao J; Sun Y Sheng Wu Gong Cheng Xue Bao; 2017 Sep; 33(9):1513-1524. PubMed ID: 28956397 [TBL] [Abstract][Full Text] [Related]
29. HmsC, a periplasmic protein, controls biofilm formation via repression of HmsD, a diguanylate cyclase in Yersinia pestis. Ren GX; Yan HQ; Zhu H; Guo XP; Sun YC Environ Microbiol; 2014 Apr; 16(4):1202-16. PubMed ID: 24192006 [TBL] [Abstract][Full Text] [Related]
30. A refined model of how Yersinia pestis produces a transmissible infection in its flea vector. Dewitte A; Bouvenot T; Pierre F; Ricard I; Pradel E; Barois N; Hujeux A; Bontemps-Gallo S; Sebbane F PLoS Pathog; 2020 Apr; 16(4):e1008440. PubMed ID: 32294143 [TBL] [Abstract][Full Text] [Related]
31. The hmsT 3' untranslated region mediates c-di-GMP metabolism and biofilm formation in Yersinia pestis. Zhu H; Mao XJ; Guo XP; Sun YC Mol Microbiol; 2016 Mar; 99(6):1167-78. PubMed ID: 26711808 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis. Quintard K; Dewitte A; Reboul A; Madec E; Bontemps-Gallo S; Dondeyne J; Marceau M; Simonet M; Lacroix JM; Sebbane F Infect Immun; 2015 Sep; 83(9):3638-47. PubMed ID: 26150539 [TBL] [Abstract][Full Text] [Related]
33. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. Jarrett CO; Deak E; Isherwood KE; Oyston PC; Fischer ER; Whitney AR; Kobayashi SD; DeLeo FR; Hinnebusch BJ J Infect Dis; 2004 Aug; 190(4):783-92. PubMed ID: 15272407 [TBL] [Abstract][Full Text] [Related]
34. HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Jones HA; Lillard JW; Perry RD Microbiology (Reading); 1999 Aug; 145 ( Pt 8)():2117-2128. PubMed ID: 10463178 [TBL] [Abstract][Full Text] [Related]
35. Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Knirel YA; Lindner B; Vinogradov EV; Kocharova NA; Senchenkova SN; Shaikhutdinova RZ; Dentovskaya SV; Fursova NK; Bakhteeva IV; Titareva GM; Balakhonov SV; Holst O; Gremyakova TA; Pier GB; Anisimov AP Biochemistry; 2005 Feb; 44(5):1731-43. PubMed ID: 15683257 [TBL] [Abstract][Full Text] [Related]
36. Schachterle JK; Stewart RM; Schachterle MB; Calder JT; Kang H; Prince JT; Erickson DL Front Cell Infect Microbiol; 2018; 8():323. PubMed ID: 30280093 [TBL] [Abstract][Full Text] [Related]
37. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Bobrov AG; Kirillina O; Forman S; Mack D; Perry RD Environ Microbiol; 2008 Jun; 10(6):1419-32. PubMed ID: 18279344 [TBL] [Abstract][Full Text] [Related]
38. Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Grabenstein JP; Fukuto HS; Palmer LE; Bliska JB Infect Immun; 2006 Jul; 74(7):3727-41. PubMed ID: 16790745 [TBL] [Abstract][Full Text] [Related]
39. Genetic Regulation of Yersinia pestis. Han Y; Fang H; Liu L; Zhou D Adv Exp Med Biol; 2016; 918():223-256. PubMed ID: 27722865 [TBL] [Abstract][Full Text] [Related]