BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27014308)

  • 1. Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora.
    Bollmann SR; Fang Y; Press CM; Tyler BM; Grünwald NJ
    Front Plant Sci; 2016; 7():284. PubMed ID: 27014308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion and Divergence of Argonaute Genes in the Oomycete Genus
    Bollmann SR; Press CM; Tyler BM; Grünwald NJ
    Front Microbiol; 2018; 9():2841. PubMed ID: 30555430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Pectin Methylesterase Gene Complement of Phytophthora sojae: Structural and Functional Analyses, and the Evolutionary Relationships with Its Oomycete Homologs.
    Horowitz BB; Ospina-Giraldo MD
    PLoS One; 2015; 10(11):e0142096. PubMed ID: 26544849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenomic Reconstruction of the Oomycete Phylogeny Derived from 37 Genomes.
    McCarthy CGP; Fitzpatrick DA
    mSphere; 2017; 2(2):. PubMed ID: 28435885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Identification of Dicer-Like, Argonaute, and RNA-Dependent RNA Polymerase Gene Families in
    Cao JY; Xu YP; Li W; Li SS; Rahman H; Cai XZ
    Front Plant Sci; 2016; 7():1614. PubMed ID: 27833632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification of DCL, AGO, and RDR gene families in wheat (
    Mishra S; Sharma P; Singh R; Ahlawat OP; Singh G
    Physiol Mol Biol Plants; 2023 Oct; 29(10):1525-1541. PubMed ID: 38076771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse Trajectories Drive the Expression of a Giant Virus in the Oomycete Plant Pathogen
    Hannat S; Pontarotti P; Colson P; Kuhn ML; Galiana E; La Scola B; Aherfi S; Panabières F
    Front Microbiol; 2021; 12():662762. PubMed ID: 34140938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants.
    Anderson RG; Casady MS; Fee RA; Vaughan MM; Deb D; Fedkenheuer K; Huffaker A; Schmelz EA; Tyler BM; McDowell JM
    Plant J; 2012 Dec; 72(6):882-93. PubMed ID: 22709376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of long non-coding RNAs suggests a potential association with effector gene transcription in Phytophthora sojae.
    Wang Y; Ye W; Wang Y
    Mol Plant Pathol; 2018 Sep; 19(9):2177-2186. PubMed ID: 29665235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Search for Evidence of Interdomain Horizontal Gene Transfer from Prokaryotes to Oomycete Lineages.
    McCarthy CG; Fitzpatrick DA
    mSphere; 2016; 1(5):. PubMed ID: 27642638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae.
    Wang R; Zhang M; Liu H; Xu J; Yu J; He F; Zhang X; Dong S; Dou D
    Fungal Biol; 2016 Apr; 120(4):620-630. PubMed ID: 27020161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction of the harpin
    Niu L; Yang J; Zhang J; He H; Xing G; Zhao Q; Guo D; Sui L; Zhong X; Yang X
    Transgenic Res; 2019 Apr; 28(2):257-266. PubMed ID: 30830582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA silencing proteins and small RNAs in oomycete plant pathogens and biocontrol agents.
    Piombo E; Kelbessa BG; Sundararajan P; Whisson SC; Vetukuri RR; Dubey M
    Front Microbiol; 2023; 14():1076522. PubMed ID: 37032886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.
    Seidl MF; Van den Ackerveken G; Govers F; Snel B
    Genome Biol Evol; 2012; 4(3):199-211. PubMed ID: 22230142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and phylogenetic analyses of the GP42 transglutaminase from Phytophthora sojae reveal an evolutionary relationship between oomycetes and marine Vibrio bacteria.
    Reiss K; Kirchner E; Gijzen M; Zocher G; Löffelhardt B; Nürnberger T; Stehle T; Brunner F
    J Biol Chem; 2011 Dec; 286(49):42585-42593. PubMed ID: 21994936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of
    Gao RF; Wang JY; Liu KW; Yoshida K; Hsiao YY; Shi YX; Tsai KC; Chen YY; Mitsuda N; Liang CK; Wang ZW; Wang Y; Zhang DY; Huang L; Zhao X; Zhong WY; Cheng YH; Jiang ZD; Li MH; Sun WH; Yu X; Hu W; Zhou Z; Zhou XF; Yeh CM; Katoh K; Tsai WC; Liu ZJ; Martin F; Zhang GM
    Heliyon; 2021 Feb; 7(2):e06317. PubMed ID: 33665461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.
    Chen XR; Zhang BY; Xing YP; Li QY; Li YP; Tong YH; Xu JY
    BMC Genomics; 2014 Nov; 15(1):980. PubMed ID: 25406848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neofunctionalization of Glycolytic Enzymes: An Evolutionary Route to Plant Parasitism in the Oomycete
    Kuhn ML; Berre JL; Kebdani-Minet N; Panabières F
    Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining oomycete proteomes for phosphatome leads to the identification of specific expanded phosphatases in oomycetes.
    Qiu M; Sun Y; Tu S; Li H; Yang X; Zhao H; Yin M; Li Y; Ye W; Wang M; Wang Y
    Mol Plant Pathol; 2024 Mar; 25(3):e13425. PubMed ID: 38462784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Analysis of Oomycete Genome Evolution Using the Oomycete Gene Order Browser (OGOB).
    McGowan J; Byrne KP; Fitzpatrick DA
    Genome Biol Evol; 2019 Jan; 11(1):189-206. PubMed ID: 30535146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.