These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27014394)

  • 1. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
    Walid Rezanoor M; Dutta P
    Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional rotation of deformable cells at a bipolar electrode array using a rotating electric field.
    Wu Y; Yue Y; Zhang H; Ma X; Zhang Z; Li K; Meng Y; Wang S; Wang X; Huang W
    Lab Chip; 2024 Feb; 24(4):933-945. PubMed ID: 38273814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of nanoparticles uptaken by cells on electrorotation.
    Chuang CH; Hsu YM; Yeh CC
    Electrophoresis; 2009 May; 30(9):1449-56. PubMed ID: 19350546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrorotation of leaky-dielectric and conducting microspheres in asymmetric electrolytes and angular velocity reversal.
    Miloh T; Nagler J
    Electrophoresis; 2020 Aug; 41(15):1296-1307. PubMed ID: 32357251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional and Stepwise Rotation of Cells and Particles Using Induced Charge Electroosmosis Vortexes.
    Wang S; Zhang Z; Ma X; Yue Y; Li K; Meng Y; Wu Y
    Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements.
    Dey R; Shaik VA; Chakraborty D; Ghosal S; Chakraborty S
    Langmuir; 2015 Jun; 31(21):5952-61. PubMed ID: 25954982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and optimization of an octuple-electrode array for micro-particle chain rotation
    Huan Z; Chen Z; Zheng X; Zhang Y; Zhang J; Ma W
    Analyst; 2024 Jun; 149(12):3346-3355. PubMed ID: 38700251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis.
    Gencoglu A; Olney D; LaLonde A; Koppula KS; Lapizco-Encinas BH
    Electrophoresis; 2014 Feb; 35(2-3):362-73. PubMed ID: 24166858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling a Dielectrophoretic Microfluidic Device with Vertical Interdigitated Transducer Electrodes for Separation of Microparticles Based on Size.
    Alnaimat F; Mathew B; Hilal-Alnaqbi A
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels.
    Fernández-Mateo R; Calero V; Morgan H; Ramos A; García-Sánchez P
    Anal Chem; 2021 Nov; 93(44):14667-14674. PubMed ID: 34704741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled electrorotation: two proximate microspheres spin in registry with an AC electric field.
    Simpson GJ; Wilson CF; Gericke KH; Zare RN
    Chemphyschem; 2002 May; 3(5):416-23. PubMed ID: 12465501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip micromanipulation and assembly of colloidal particles by electric fields.
    Velev OD; Bhatt KH
    Soft Matter; 2006 Aug; 2(9):738-750. PubMed ID: 32680214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nozzle-Shaped Electrode Configuration for Dielectrophoretic 3D-Focusing of Microparticles.
    Krishna S; Alnaimat F; Mathew B
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480490
    [No Abstract]   [Full Text] [Related]  

  • 20. Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks.
    Lewpiriyawong N; Yang C; Lam YC
    Biomicrofluidics; 2008 Aug; 2(3):34105. PubMed ID: 19693372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.