BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27014860)

  • 21. Inter-device size variation of small choroidal nevi measured using stereographic projection ultra-widefield imaging and optical coherence tomography.
    Maloca P; Gyger C; Schoetzau A; Hasler PW
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):797-808. PubMed ID: 26537123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MULTIMODAL IMAGING ADDS NEW INSIGHTS INTO ACUTE SYPHILITIC POSTERIOR PLACOID CHORIORETINITIS.
    Tsui E; Gal-Or O; Ghadiali Q; Freund KB
    Retin Cases Brief Rep; 2018 Fall; 12 Suppl 1():S3-S8. PubMed ID: 29023263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative Study of Ultrasonography and Ultra-Widefield Fundus Photographs for Measurements of the Diameter of Choroidal and Retinal Tumors.
    Wang Q; Yang JY; Wei WB; Yang Q
    Ophthalmol Ther; 2023 Dec; 12(6):3001-3011. PubMed ID: 37603161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-widefield imaging for the management of pediatric retinal diseases.
    Kang KB; Wessel MM; Tong J; D'Amico DJ; Chan RV
    J Pediatr Ophthalmol Strabismus; 2013; 50(5):282-8. PubMed ID: 23739460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-Mydriatic Ultra-Widefield Imaging Compared With Single-Field Imaging in the Evaluation of Peripheral Retinal Pathology.
    Adhi M; Silva FQ; Lang R; Seballos R; Sukol RB; Feinleib S; Singh RP
    Ophthalmic Surg Lasers Imaging Retina; 2017 Dec; 48(12):962-968. PubMed ID: 29253298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Efficacy of Ultra-wide Angle Fundus Imaging without Dilated Pupils in Annual Health Check-up Examination].
    Kusumi Y; Sano M; Nakayama M; Koto T; Inoue M; Yamamoto M; Hirakata A
    Nippon Ganka Gakkai Zasshi; 2016 Jan; 120(1):35-40. PubMed ID: 26950967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of two ultra-widefield imaging for detecting peripheral retinal breaks requiring treatment.
    Kumar J; Kohli P; Babu N; Krishnakumar K; Arthur D; Ramasamy K
    Graefes Arch Clin Exp Ophthalmol; 2021 Jun; 259(6):1427-1434. PubMed ID: 32970213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-widefield retinal imaging through a black intraocular lens.
    Yusuf IH; Fung TH; Patel CK
    J Cataract Refract Surg; 2015 Sep; 41(9):1926-33. PubMed ID: 26603401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology.
    Ko TH; Fujimoto JG; Schuman JS; Paunescu LA; Kowalevicz AM; Hartl I; Drexler W; Wollstein G; Ishikawa H; Duker JS
    Ophthalmology; 2005 Nov; 112(11):1922.e1-15. PubMed ID: 16183127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal Imaging: Past, Present, and Future.
    Landry DA
    Insight; 2016; 41(2):5-11, 35; quiz 12. PubMed ID: 27209684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Population-Based Ultra-Widefield Digital Image Grading Study for Age-Related Macular Degeneration-Like Lesions at the Peripheral Retina.
    Lengyel I; Csutak A; Florea D; Leung I; Bird AC; Jonasson F; Peto T
    Ophthalmology; 2015 Jul; 122(7):1340-7. PubMed ID: 25870081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery.
    Choudhry N; Golding J; Manry MW; Rao RC
    Ophthalmology; 2016 Jun; 123(6):1368-74. PubMed ID: 26992837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wide-field fundus imaging using the Optos Optomap and a disposable eyelid speculum.
    Inoue M; Yanagawa A; Yamane S; Arakawa A; Kawai Y; Kadonosono K
    JAMA Ophthalmol; 2013 Feb; 131(2):226. PubMed ID: 23411888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-widefield retinal imaging: an update on recent advances.
    Patel SN; Shi A; Wibbelsman TD; Klufas MA
    Ther Adv Ophthalmol; 2020; 12():2515841419899495. PubMed ID: 32010879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optos Optomap Panoramic 200MA imaging of a serous choroidal detachment responsive to furosemide.
    Shah SP; Jain A; Tsui I; McCannel TA
    Semin Ophthalmol; 2009; 24(1):40-2. PubMed ID: 19241292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The utility of ultra-widefield fluorescein angiography in pediatric retinal diseases.
    Calvo CM; Hartnett ME
    Int J Retina Vitreous; 2018; 4():21. PubMed ID: 29992045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central serous chorioretinopathy imaged by optical coherence tomography.
    Kamppeter B; Jonas JB
    Arch Ophthalmol; 2003 May; 121(5):742-3. PubMed ID: 12742862
    [No Abstract]   [Full Text] [Related]  

  • 38. A Novel, Smartphone-Based, Teleophthalmology-Enabled, Widefield Fundus Imaging Device With an Autocapture Algorithm.
    Sivaraman A; Nagarajan S; Vadivel S; Dutt S; Tiwari P; Narayana S; Rao DP
    Transl Vis Sci Technol; 2021 Oct; 10(12):21. PubMed ID: 34661624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinal imaging in the twenty-first century: state of the art and future directions.
    Keane PA; Sadda SR
    Ophthalmology; 2014 Dec; 121(12):2489-500. PubMed ID: 25282252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography.
    Croft DE; van Hemert J; Wykoff CC; Clifton D; Verhoek M; Fleming A; Brown DM
    Ophthalmic Surg Lasers Imaging Retina; 2014; 45(4):312-7. PubMed ID: 25037013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.