These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27014998)

  • 1. Structure-Property Relationships in CO2-philic (Co)polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions.
    Girard E; Tassaing T; Marty JD; Destarac M
    Chem Rev; 2016 Apr; 116(7):4125-69. PubMed ID: 27014998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-angle X-ray scattering insights into the architecture-dependent emulsifying properties of amphiphilic copolymers in supercritical carbon dioxide.
    Alaimo D; Hermida Merino D; Grignard B; Bras W; Jérôme C; Debuigne A; Gommes CJ
    J Phys Chem B; 2015 Jan; 119(4):1706-16. PubMed ID: 25516221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface activity of a fluorinated carbohydrate ester in water/carbon dioxide emulsions.
    Favrelle A; Boyère C; Tran KM; Alaimo D; Calvignac B; Paquot M; Boury F; Jérôme C; Debuigne A
    J Colloid Interface Sci; 2013 May; 398():273-5. PubMed ID: 23497920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and self-assembly of surfactant/supercritical CO2 systems in confined pores: a molecular dynamics simulation.
    Xu Z; Yang X; Yang Z
    Langmuir; 2007 Aug; 23(18):9201-12. PubMed ID: 17676777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphiphiles for supercritical CO2.
    Cummings S; Enick R; Rogers S; Heenan R; Eastoe J
    Biochimie; 2012 Jan; 94(1):94-100. PubMed ID: 21745531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility and self-assembly of amphiphilic gradient and block copolymers in supercritical CO2.
    Ribaut T; Oberdisse J; Annighofer B; Fournel B; Sarrade S; Haller H; Lacroix-Desmazes P
    J Phys Chem B; 2011 Feb; 115(5):836-43. PubMed ID: 21222465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotically driven formation of double emulsions stabilized by amphiphilic block copolymers.
    Bae J; Russell TP; Hayward RC
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8240-5. PubMed ID: 24931713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures.
    Sarbu T; Styranec T; Beckman EJ
    Nature; 2000 May; 405(6783):165-8. PubMed ID: 10821268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The self-assembly structure and the CO
    Wang M; Fang T; Wang P; Tang X; Sun B; Zhang J; Liu B
    Soft Matter; 2016 Oct; 12(39):8177-8185. PubMed ID: 27714309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.
    Moshaverinia A; Roohpour N; Darr JA; Rehman IU
    Acta Biomater; 2009 Jun; 5(5):1656-62. PubMed ID: 19269267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled reverse micelles in supercritical CO2 entrap protein in native state.
    Chaitanya VS; Senapati S
    J Am Chem Soc; 2008 Feb; 130(6):1866-70. PubMed ID: 18198866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active interfacial modifier: stabilization mechanism of water in silicone oil emulsions by peptide-silicone hybrid polymers.
    Sakai K; Ikeda R; Sharma SC; Shrestha RG; Ohtani N; Yoshioka M; Sakai H; Abe M; Sakamoto K
    Langmuir; 2010 Apr; 26(8):5349-54. PubMed ID: 20232883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimum tail length of fluorinated double-tail anionic surfactant for water/supercritical CO2 microemulsion formation.
    Sagisaka M; Koike D; Yoda S; Takebayashi Y; Furuya T; Yoshizawa A; Sakai H; Abe M; Otake K
    Langmuir; 2007 Aug; 23(17):8784-8. PubMed ID: 17637005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Solubility of Polyvinyl Esters in scCO
    Liu X; Coutelier O; Harrisson S; Tassaing T; Marty JD; Destarac M
    ACS Macro Lett; 2015 Jan; 4(1):89-93. PubMed ID: 35596379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant formation efficiency of fluorocarbon-hydrocarbon oligomers in supercritical CO2.
    Can H; Kacar G; Atilgan C
    J Chem Phys; 2009 Sep; 131(12):124701. PubMed ID: 19791906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving carbon dioxide solubility in ionic liquids.
    Muldoon MJ; Aki SN; Anderson JL; Dixon JK; Brennecke JF
    J Phys Chem B; 2007 Aug; 111(30):9001-9. PubMed ID: 17608519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of CO2-philicity of poly(vinyl acetate) and poly(vinyl acetate-alt-maleate) copolymers through molecular modeling and dissolution behavior measurement.
    Hu D; Sun S; Yuan P; Zhao L; Liu T
    J Phys Chem B; 2015 Feb; 119(7):3194-204. PubMed ID: 25599262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: continuous versus batch operation layouts.
    Porta GD; Campardelli R; Falco N; Reverchon E
    J Pharm Sci; 2011 Oct; 100(10):4357-67. PubMed ID: 21638283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies for Lewis acid-base interactions and C-H...O weak hydrogen bonding in various CO2 complexes.
    Kim KH; Kim Y
    J Phys Chem A; 2008 Feb; 112(7):1596-603. PubMed ID: 18220375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the TBP and water on the complexation of uranyl nitrate and the dissolution of nitric acid into supercritical CO2. A Theoretical Study.
    Schurhammer R; Wipff G
    J Phys Chem A; 2005 Jun; 109(23):5208-16. PubMed ID: 16833878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.