These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 27015124)
41. Efficient energy transfer from peripheral chromophores to the self-assembled zinc chlorin rod antenna: a bioinspired light-harvesting system to bridge the "green gap". Röger C; Müller MG; Lysetska M; Miloslavina Y; Holzwarth AR; Würthner F J Am Chem Soc; 2006 May; 128(20):6542-3. PubMed ID: 16704238 [TBL] [Abstract][Full Text] [Related]
43. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Huynh E; Jin CS; Wilson BC; Zheng G Bioconjug Chem; 2014 Apr; 25(4):796-801. PubMed ID: 24621279 [TBL] [Abstract][Full Text] [Related]
44. Nanoscale porphyrin assemblies based on charge-transfer strategy with enhanced red-shifted absorption. Wu Q; Xia R; Wen H; Sun T; Xie Z J Colloid Interface Sci; 2022 Dec; 627():554-561. PubMed ID: 35870407 [TBL] [Abstract][Full Text] [Related]
45. Bacteriochlorins with a Twist: Discovery of a Unique Mechanism to Red-Shift the Optical Spectra of Bacteriochlorins. Guberman-Pfeffer MJ; Greco JA; Samankumara LP; Zeller M; Birge RR; Gascón JA; Brückner C J Am Chem Soc; 2017 Jan; 139(1):548-560. PubMed ID: 27997161 [TBL] [Abstract][Full Text] [Related]
46. Virus-templated assembly of porphyrins into light-harvesting nanoantennae. Nam YS; Shin T; Park H; Magyar AP; Choi K; Fantner G; Nelson KA; Belcher AM J Am Chem Soc; 2010 Feb; 132(5):1462-3. PubMed ID: 20078048 [TBL] [Abstract][Full Text] [Related]
47. Self-aggregation of synthetic zinc chlorophyll derivatives possessing 3(1)-hydroxy or methoxy group and 13(1)-mono- or dicyanomethylene moiety in nonpolar organic solvents as models of chlorosomal bacteriochlorophyll-d aggregates. Tamiaki H; Kuno M; Ohata M Photochem Photobiol; 2014; 90(6):1277-86. PubMed ID: 25131457 [TBL] [Abstract][Full Text] [Related]
48. Molecular energy and electron transfer assemblies made of self-organized lipid-porphyrin bilayer vesicles. Komatsu T; Moritake M; Tsuchida E Chemistry; 2003 Oct; 9(19):4626-33. PubMed ID: 14566867 [TBL] [Abstract][Full Text] [Related]
49. Examination of chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes. Kee HL; Nothdurft R; Muthiah C; Diers JR; Fan D; Ptaszek M; Bocian DF; Lindsey JS; Culver JP; Holten D Photochem Photobiol; 2008; 84(5):1061-72. PubMed ID: 18673324 [TBL] [Abstract][Full Text] [Related]
50. Photophysical analysis of 1,10-phenanthroline-embedded porphyrin analogues and their magnesium(II) complexes. Ishida M; Lim JM; Lee BS; Tani F; Sessler JL; Kim D; Naruta Y Chemistry; 2012 Nov; 18(45):14329-41. PubMed ID: 23008189 [TBL] [Abstract][Full Text] [Related]
52. Photophysical properties and electronic structure of stable, tunable synthetic bacteriochlorins: extending the features of native photosynthetic pigments. Yang E; Kirmaier C; Krayer M; Taniguchi M; Kim HJ; Diers JR; Bocian DF; Lindsey JS; Holten D J Phys Chem B; 2011 Sep; 115(37):10801-16. PubMed ID: 21875047 [TBL] [Abstract][Full Text] [Related]
53. Conjugated Polymer-Based Hybrid Nanoparticles with Two-Photon Excitation and Near-Infrared Emission Features for Fluorescence Bioimaging within the Biological Window. Lv Y; Liu P; Ding H; Wu Y; Yan Y; Liu H; Wang X; Huang F; Zhao Y; Tian Z ACS Appl Mater Interfaces; 2015 Sep; 7(37):20640-8. PubMed ID: 26340609 [TBL] [Abstract][Full Text] [Related]
54. Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. Furumaki S; Vacha F; Habuchi S; Tsukatani Y; Bryant DA; Vacha M J Am Chem Soc; 2011 May; 133(17):6703-10. PubMed ID: 21476570 [TBL] [Abstract][Full Text] [Related]
55. Chlorin e6 combined with albumin nanoparticles as a potential composite photosensitizer for photodynamic therapy of tumors. Shton IO; Sarnatskaya VV; Prokopenko IV; Gamaleia NF Exp Oncol; 2015 Dec; 37(4):250-4. PubMed ID: 26710836 [TBL] [Abstract][Full Text] [Related]
56. Low-temperature fluorescence from single chlorosomes, photosynthetic antenna complexes of green filamentous and sulfur bacteria. Shibata Y; Saga Y; Tamiaki H; Itoh S Biophys J; 2006 Nov; 91(10):3787-96. PubMed ID: 16950839 [TBL] [Abstract][Full Text] [Related]
57. Studies on the effects of metal ions and counter anions on the aggregate behaviors of meso-tetrakis(p-sulfonatophenyl)porphyrin by absorption and fluorescence spectroscopy. Ma HL; Jin WJ Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):153-60. PubMed ID: 18182319 [TBL] [Abstract][Full Text] [Related]
58. Self-assembly of synthetic zinc chlorins in a silicate micelle prepared by sol-gel process. Saga Y; Miyatake T; Tamiaki H Bioorg Med Chem Lett; 2002 Apr; 12(8):1229-31. PubMed ID: 11934594 [TBL] [Abstract][Full Text] [Related]
59. Fluorescence Excitation Spectra from Individual Chlorosomes of the Green Sulfur Bacterium Chlorobaculum tepidum. Jendrny M; Aartsma TJ; Köhler J J Phys Chem Lett; 2012 Dec; 3(24):3745-50. PubMed ID: 26291105 [TBL] [Abstract][Full Text] [Related]
60. Self-organized lipid-porphyrin bilayer membranes in vesicular form: nanostructure, photophysical properties, and dioxygen coordination. Komatsu T; Moritake M; Nakagawa A; Tsuchida E Chemistry; 2002 Dec; 8(23):5469-80. PubMed ID: 12561319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]