These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 27015154)
1. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia. Attar MM; Haghpanahi M Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154 [TBL] [Abstract][Full Text] [Related]
2. Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line. Attar MM; Amanpour S; Haghpanahi M; Haddadi M; Rezaei G; Muhammadnejad S; HajiAkhoundzadeh M; Barati T; Sadeghi F; Javadi S Int J Hyperthermia; 2016 Dec; 32(8):858-867. PubMed ID: 27418409 [TBL] [Abstract][Full Text] [Related]
3. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
4. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions. Hadadian Y; Azimbagirad M; Navas EA; Pavan TZ Rev Sci Instrum; 2019 Jul; 90(7):074701. PubMed ID: 31370463 [TBL] [Abstract][Full Text] [Related]
5. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
6. [A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field]. Liu X; Xu B; Xia QS; Zhao TD; Tang JT Ai Zheng; 2005 Sep; 24(9):1148-50. PubMed ID: 16159444 [TBL] [Abstract][Full Text] [Related]
7. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related]
8. Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles. Murase K; Oonoki J; Takata H; Song R; Angraini A; Ausanai P; Matsushita T Radiol Phys Technol; 2011 Jul; 4(2):194-202. PubMed ID: 21667079 [TBL] [Abstract][Full Text] [Related]
9. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Kossatz S; Ludwig R; Dähring H; Ettelt V; Rimkus G; Marciello M; Salas G; Patel V; Teran FJ; Hilger I Pharm Res; 2014 Dec; 31(12):3274-88. PubMed ID: 24890197 [TBL] [Abstract][Full Text] [Related]
10. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles. Lacroix LM; Carrey J; Respaud M Rev Sci Instrum; 2008 Sep; 79(9):093909. PubMed ID: 19044430 [TBL] [Abstract][Full Text] [Related]
11. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Caizer C Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292 [TBL] [Abstract][Full Text] [Related]
12. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
13. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108 [TBL] [Abstract][Full Text] [Related]
14. Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with α Del Sol-Fernández S; Portilla-Tundidor Y; Gutiérrez L; Odio OF; Reguera E; Barber DF; Morales MP ACS Appl Mater Interfaces; 2019 Jul; 11(30):26648-26663. PubMed ID: 31287950 [TBL] [Abstract][Full Text] [Related]
15. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. Hayashi K; Ono K; Suzuki H; Sawada M; Moriya M; Sakamoto W; Yogo T ACS Appl Mater Interfaces; 2010 Jul; 2(7):1903-11. PubMed ID: 20568697 [TBL] [Abstract][Full Text] [Related]
16. A Heat Dissipation Study of Iron Oxide Nanoparticles Embedded an Agar Phantom for the Purpose of Magnetic Fluid Hyperthermia. Yamamoto Y; Itoh T; Irieda T J Nanosci Nanotechnol; 2019 Sep; 19(9):5469-5475. PubMed ID: 30961698 [TBL] [Abstract][Full Text] [Related]
17. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia. Usov NA; Nesmeyanov MS; Tarasov VP Sci Rep; 2018 Jan; 8(1):1224. PubMed ID: 29352175 [TBL] [Abstract][Full Text] [Related]
18. Effect of AEM energy applicator configuration on magnetic nanoparticle mediated hyperthermia for breast cancer. Sanapala KK; Hewaparakrama K; Kang KA Adv Exp Med Biol; 2011; 701():143-8. PubMed ID: 21445781 [TBL] [Abstract][Full Text] [Related]
19. Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia. Javidi M; Heydari M; Attar MM; Haghpanahi M; Karimi A; Navidbakhsh M; Amanpour S Int J Hyperthermia; 2015 Feb; 31(1):33-9. PubMed ID: 25523967 [TBL] [Abstract][Full Text] [Related]
20. A coil system for real-time magnetic fluid hyperthermia microscopy studies. Subramanian M; Miaskowski A; Pearce G; Dobson J Int J Hyperthermia; 2016; 32(2):112-20. PubMed ID: 26670862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]