These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27015296)

  • 1. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.
    Larsen N; Moslehi-Jenabian S; Werner BB; Jensen ML; Garrigues C; Vogensen FK; Jespersen L
    Int J Food Microbiol; 2016 Jun; 226():5-12. PubMed ID: 27015296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional responses in Lactococcus lactis subsp. cremoris to the changes in oxygen and redox potential during milk acidification.
    Larsen N; Brøsted Werner B; Jespersen L
    Lett Appl Microbiol; 2016 Aug; 63(2):117-23. PubMed ID: 27234372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.
    Larsen N; Werner BB; Vogensen FK; Jespersen L
    J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Milk acidification by Lactococcus lactis is improved by decreasing the level of dissolved oxygen rather than decreasing redox potential in the milk prior to inoculation.
    Jeanson S; Hilgert N; Coquillard MO; Seukpanya C; Faiveley M; Neveu P; Abraham C; Georgescu V; Fourcassié P; Beuvier E
    Int J Food Microbiol; 2009 Apr; 131(1):75-81. PubMed ID: 18986723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter.
    López-González MJ; Campelo AB; Picon A; Rodríguez A; Martínez B
    BMC Microbiol; 2018 Jul; 18(1):76. PubMed ID: 30029618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Flavor-Forming Starter
    Lee HW; Kim IS; Kil BJ; Seo E; Park H; Ham JS; Choi YJ; Huh CS
    J Microbiol Biotechnol; 2020 Sep; 30(9):1404-1411. PubMed ID: 32522956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.
    Desfossés-Foucault É; LaPointe G; Roy D
    Int J Food Microbiol; 2014 May; 178():76-86. PubMed ID: 24674930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of Lactococcus lactis during advanced ripening stages of model cheeses characterized by GC-MS.
    Ruggirello M; Giordano M; Bertolino M; Ferrocino I; Cocolin L; Dolci P
    Food Microbiol; 2018 Sep; 74():132-142. PubMed ID: 29706329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic analysis of Lactococcus chungangensis sp. nov. and its potential in cheese making.
    Konkit M; Kim JH; Bora N; Kim W
    J Dairy Sci; 2014 Dec; 97(12):7363-72. PubMed ID: 25306283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Laboratory Evolution as a Means To Generate Lactococcus lactis Strains with Improved Thermotolerance and Ability To Autolyze.
    Dorau R; Chen J; Liu J; Ruhdal Jensen P; Solem C
    Appl Environ Microbiol; 2021 Oct; 87(21):e0103521. PubMed ID: 34406823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness.
    Dijkstra AR; Alkema W; Starrenburg MJ; Hugenholtz J; van Hijum SA; Bron PA
    Microb Cell Fact; 2014 Nov; 13():148. PubMed ID: 25366036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptome analysis of Lactococcus lactis subsp. cremoris strains under conditions simulating Cheddar cheese manufacture.
    Taïbi A; Dabour N; Lamoureux M; Roy D; LaPointe G
    Int J Food Microbiol; 2011 Apr; 146(3):263-75. PubMed ID: 21435733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic and transcriptomic adaptation of Lactococcus lactis subsp. lactis Biovar diacetylactis in response to autoacidification and temperature downshift in skim milk.
    Raynaud S; Perrin R; Cocaign-Bousquet M; Loubiere P
    Appl Environ Microbiol; 2005 Dec; 71(12):8016-23. PubMed ID: 16332781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of
    Frantzen CA; Kleppen HP; Holo H
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29222100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of genomic characteristics and carbohydrates' metabolic activity of Lactococcus lactis subsp. lactis during ripening of a Swiss-type cheese.
    Mataragas M
    Food Microbiol; 2020 May; 87():103392. PubMed ID: 31948633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic and molecular characterization of Lactococcus lactis from milk and plants.
    Nomura M; Kobayashi M; Narita T; Kimoto-Nira H; Okamoto T
    J Appl Microbiol; 2006 Aug; 101(2):396-405. PubMed ID: 16882147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.
    Alegría A; Delgado S; Roces C; López B; Mayo B
    Int J Food Microbiol; 2010 Sep; 143(1-2):61-6. PubMed ID: 20708289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.
    del Rio B; Ladero V; Redruello B; Linares DM; Fernández M; Martín MC; Alvarez MA
    Food Microbiol; 2015 Jun; 48():163-70. PubMed ID: 25791004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment.
    Cavanagh D; Fitzgerald GF; McAuliffe O
    Food Microbiol; 2015 May; 47():45-61. PubMed ID: 25583337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.