These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27015478)

  • 1. Coherent Control of the Optical Absorption in a Plasmonic Lattice Coupled to a Luminescent Layer.
    Pirruccio G; Ramezani M; Rodriguez SR; Rivas JG
    Phys Rev Lett; 2016 Mar; 116(10):103002. PubMed ID: 27015478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating.
    Yoon JW; Koh GM; Song SH; Magnusson R
    Phys Rev Lett; 2012 Dec; 109(25):257402. PubMed ID: 23368498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulated light absorption and emission of a luminescent layer by phase-controlled multiple beam illumination.
    Pirruccio G; Rivas JG
    Opt Express; 2015 Jul; 23(14):18166-80. PubMed ID: 26191875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning on plasmonic lattice modes in metallic nanoantenna arrays via silicon thin films.
    Sadeghi SM; Gutha RR; Wing WJ
    Opt Lett; 2016 Jul; 41(14):3367-70. PubMed ID: 27420537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches.
    Bruck R; Muskens OL
    Opt Express; 2013 Nov; 21(23):27662-71. PubMed ID: 24514283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-plane coherent control of plasmon resonances for plasmonic switching and encoding.
    Jiang L; Yin T; Dubrovkin AM; Dong Z; Chen Y; Chen W; Yang JKW; Shen Z
    Light Sci Appl; 2019; 8():21. PubMed ID: 30728959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isosbestic light absorption by metallic dimers: effect of interparticle electromagnetic coupling.
    Ma LX; Wang CC
    Appl Opt; 2020 Feb; 59(4):1028-1036. PubMed ID: 32225239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry.
    Tok RU; Ow-Yang C; Sendur K
    Opt Express; 2011 Nov; 19(23):22731-42. PubMed ID: 22109154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas.
    Giannini V; Vecchi G; Rivas JG
    Phys Rev Lett; 2010 Dec; 105(26):266801. PubMed ID: 21231697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced absorption and photoluminescence from dye-containing thin polymer film on plasmonic array.
    Murai S; Oka S; Azzam SI; Kildishev AV; Ishii S; Tanaka K
    Opt Express; 2019 Feb; 27(4):5083-5096. PubMed ID: 30876112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband light bending with plasmonic nanoantennas.
    Ni X; Emani NK; Kildishev AV; Boltasseva A; Shalaev VM
    Science; 2012 Jan; 335(6067):427. PubMed ID: 22194414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas.
    Vecchi G; Giannini V; Gómez Rivas J
    Phys Rev Lett; 2009 Apr; 102(14):146807. PubMed ID: 19392471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct excitation of dark plasmonic resonances under visible light at normal incidence.
    Gu Y; Qin F; Yang JK; Yeo SP; Qiu CW
    Nanoscale; 2014 Feb; 6(4):2106-11. PubMed ID: 24435813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 May; 23(20):205203. PubMed ID: 22543983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers.
    Rahmani M; Lukiyanchuk B; Ng B; Tavakkoli K G A; Liew YF; Hong MH
    Opt Express; 2011 Mar; 19(6):4949-56. PubMed ID: 21445130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal coherent control of lattice vibrational waves.
    Feurer T; Vaughan JC; Nelson KA
    Science; 2003 Jan; 299(5605):374-7. PubMed ID: 12532012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency and loss mechanisms of plasmonic Luminescent Solar Concentrators.
    Tummeltshammer C; Brown MS; Taylor A; Kenyon AJ; Papakonstantinou I
    Opt Express; 2013 Sep; 21 Suppl 5():A735-49. PubMed ID: 24104570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.