These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27015794)

  • 1. Optimal digital filters for analyzing the mid-latency auditory P50 event-related potential in patients with Alzheimer's disease.
    Liljander S; Holm A; Keski-Säntti P; Partanen JV
    J Neurosci Methods; 2016 Jun; 266():50-67. PubMed ID: 27015794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic biases in early ERP and ERF components as a result of high-pass filtering.
    Acunzo DJ; Mackenzie G; van Rossum MC
    J Neurosci Methods; 2012 Jul; 209(1):212-8. PubMed ID: 22743800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition.
    Tanner D; Morgan-Short K; Luck SJ
    Psychophysiology; 2015 Aug; 52(8):997-1009. PubMed ID: 25903295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal digital filters for long-latency components of the event-related brain potential.
    Farwell LA; Martinerie JM; Bashore TR; Rapp PE; Goddard PH
    Psychophysiology; 1993 May; 30(3):306-15. PubMed ID: 8497560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal filters for ERP research II: Recommended settings for seven common ERP components.
    Zhang G; Garrett DR; Luck SJ
    Psychophysiology; 2024 Jun; 61(6):e14530. PubMed ID: 38282093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital filter design for electrophysiological data--a practical approach.
    Widmann A; Schröger E; Maess B
    J Neurosci Methods; 2015 Jul; 250():34-46. PubMed ID: 25128257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Filters for ERP Research II: Recommended Settings for Seven Common ERP Components.
    Zhang G; Garrett DR; Luck SJ
    bioRxiv; 2023 Jun; ():. PubMed ID: 37397984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analog and digital filtering of the brain stem auditory evoked response.
    Kavanagh KT; Franks R
    Ann Otol Rhinol Laryngol; 1989 Jul; 98(7 Pt 1):508-14. PubMed ID: 2751210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations of event-related brain potentials and Alzheimer's disease severity: A longitudinal study.
    Fruehwirt W; Dorffner G; Roberts S; Gerstgrasser M; Grossegger D; Schmidt R; Dal-Bianco P; Ransmayr G; Garn H; Waser M; Benke T
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Jun; 92():31-38. PubMed ID: 30582941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-pass filters and baseline correction in M/EEG analysis. Commentary on: "How inappropriate high-pass filters can produce artefacts and incorrect conclusions in ERP studies of language and cognition".
    Maess B; Schröger E; Widmann A
    J Neurosci Methods; 2016 Jun; 266():164-5. PubMed ID: 26774029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal filters for ERP research I: A general approach for selecting filter settings.
    Zhang G; Garrett DR; Luck SJ
    Psychophysiology; 2024 Jun; 61(6):e14531. PubMed ID: 38297978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple algorithm for a digital three-pole Butterworth filter of arbitrary cut-off frequency: application to digital electroencephalography.
    Alarcon G; Guy CN; Binnie CD
    J Neurosci Methods; 2000 Dec; 104(1):35-44. PubMed ID: 11163409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waveform analysis of non-oscillatory independent components in single-trial auditory event-related activity in healthy subjects and Alzheimer's disease patients.
    Jervis BW; Belal S; Cassar T; Besleaga M; Bigan C; Michalopoulos K; Zervakis M; Camilleri K; Fabri S
    Curr Alzheimer Res; 2010 Jun; 7(4):334-47. PubMed ID: 20043815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different high-pass filters on the long-latency event-related auditory evoked potentials in normal human subjects and individuals infected with the human immunodeficiency virus.
    Goodin DS; Aminoff MJ; Chequer RS
    J Clin Neurophysiol; 1992 Jan; 9(1):97-104. PubMed ID: 1552013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory gating deficit expressed by a disturbed suppression of the P50 event-related potential in patients with Alzheimer's disease.
    Jessen F; Kucharski C; Fries T; Papassotiropoulos A; Hoenig K; Maier W; Heun R
    Am J Psychiatry; 2001 Aug; 158(8):1319-21. PubMed ID: 11481170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P50 gating deficit in Alzheimer dementia correlates to frontal neuropsychological function.
    Thomas C; vom Berg I; Rupp A; Seidl U; Schröder J; Roesch-Ely D; Kreisel SH; Mundt C; Weisbrod M
    Neurobiol Aging; 2010 Mar; 31(3):416-24. PubMed ID: 18562045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A periodic spatio-spectral filter for event-related potentials.
    Ghaderi F; Kim SK; Kirchner EA
    Comput Biol Med; 2016 Dec; 79():286-298. PubMed ID: 27837720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast time-varying linear filters for suppression of baseline drift in electrocardiographic signals.
    Kozumplík J; Provazník I
    Biomed Eng Online; 2017 Feb; 16(1):24. PubMed ID: 28173809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Frequency spectra and filtering of the early auditory evoked potential].
    Tietze G; Kevanishvili Z
    HNO; 1990 Nov; 38(11):399-407. PubMed ID: 2289897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous recording and separation of early and middle latency auditory evoked potentials.
    Scherg M
    Electroencephalogr Clin Neurophysiol; 1982 Sep; 54(3):339-41. PubMed ID: 6179761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.