BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 27015893)

  • 1. Modulation of learning and memory by natural polyamines.
    Guerra GP; Rubin MA; Mello CF
    Pharmacol Res; 2016 Oct; 112():99-118. PubMed ID: 27015893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding sites of the polyamines putrescine, cadaverine, spermidine and spermine on A- and B-DNA located by simulated annealing.
    Bryson K; Greenall RJ
    J Biomol Struct Dyn; 2000 Dec; 18(3):393-412. PubMed ID: 11149516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral and neurochemical effects of acute putrescine depletion by difluoromethylornithine in rats.
    Gupta N; Zhang H; Liu P
    Neuroscience; 2009 Jul; 161(3):691-706. PubMed ID: 19348875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative abilities of bis(ethyl) derivatives of putrescine, spermidine, and spermine to regulate polyamine biosynthesis and inhibit L1210 leukemia cell growth.
    Porter CW; McManis J; Casero RA; Bergeron RJ
    Cancer Res; 1987 Jun; 47(11):2821-5. PubMed ID: 3567905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cellular localization of the L-ornithine decarboxylase/polyamine system in normal and diseased central nervous systems.
    Bernstein HG; Müller M
    Prog Neurobiol; 1999 Apr; 57(5):485-505. PubMed ID: 10215098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Methylated analogues of spermine and spermidine as tools to investigate cellular functions of polyamines and the enzymes of their metabolism].
    Khomutov AR; Keinanen TA; Grigorenko NA; Hyvonen MT; Uimari A; Pietila M; Cerrada-Gimenez M; Simonian AR; Khomutov MA; Verspalainen J; Alhonen L; Janne J
    Mol Biol (Mosk); 2009; 43(2):274-85. PubMed ID: 19425496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aliphatic polyamines in physiology and diseases.
    Ramani D; De Bandt JP; Cynober L
    Clin Nutr; 2014 Feb; 33(1):14-22. PubMed ID: 24144912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased brain concentrations of polyamines in rats with encephalopathy due to a galactosamine-induced fulminant hepatic failure.
    Baraldi M; Zeneroli ML; Zanoli P; Truzzi C; Venturini I; Davalli P; Corti A
    Pharmacol Res; 1995; 32(1-2):57-61. PubMed ID: 8668648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and content of polyamines in bloodstream Trypanosma brucei.
    Bacchi CJ; Vergara C; Garofalo J; Lipschik GY; Hutner SH
    J Protozool; 1979 Aug; 26(3):484-8. PubMed ID: 536937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Putrescine, polyamines, and N1-acetylpolyamine levels in retina, visual cortex and cerebellum of free-running mice kept under continuous light or darkness.
    Macaione S; Cangemi F; Fabiano C; Crisafulli G; Aronica T; Ientile R
    Ital J Biochem; 1993; 42(3):151-64. PubMed ID: 8407267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism.
    Pegg AE; Tang KC; Coward JK
    Biochemistry; 1982 Sep; 21(20):5082-9. PubMed ID: 6291600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotoxicity of polyamines and pharmacological neuroprotection in cultures of rat cerebellar granule cells.
    Sparapani M; Dall'Olio R; Gandolfi O; Ciani E; Contestabile A
    Exp Neurol; 1997 Nov; 148(1):157-66. PubMed ID: 9398458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of polyamine depletion on proliferation and differentiation of murine erythroleukemia cells.
    Sugiura M; Shafman T; Kufe D
    Cancer Res; 1984 Apr; 44(4):1440-4. PubMed ID: 6423275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of polyamine biosynthesis by follicle-stimulating hormone in serum-free cultures of rat Sertoli cells.
    Swift TA; Dias JA
    Endocrinology; 1987 Jan; 120(1):394-400. PubMed ID: 3023035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells.
    Yanagihara N; Moriwaki M; Shiraki K; Miki T; Otani S
    Invest Ophthalmol Vis Sci; 1996 Sep; 37(10):1975-83. PubMed ID: 8814137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The polyamines, spermine and spermidine, negatively modulate N-methyl-d-aspartate (NMDA) and quisqualate receptor mediated responses in vivo : Cerebellar cyclic GMP measurements.
    Rao TS; Cler JA; Oei EJ; Emmett MR; Mick SJ; Iyengar S; Wood PL
    Neurochem Int; 1990; 16(2):199-206. PubMed ID: 20504558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae.
    Tabor CW; Tabor H; Tyagi AK; Cohn MS
    Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamines: naturally occurring small molecule modulators of electrostatic protein-protein interactions.
    Berwanger A; Eyrisch S; Schuster I; Helms V; Bernhardt R
    J Inorg Biochem; 2010 Feb; 104(2):118-25. PubMed ID: 19926138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective release of spermine and spermidine from the rat striatum by N-methyl-D-aspartate receptor activation in vivo.
    Fage D; Voltz C; Scatton B; Carter C
    J Neurochem; 1992 Jun; 58(6):2170-5. PubMed ID: 1533418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putrescine supplementation shifts macrophage L-arginine metabolism related-genes reducing Leishmania amazonensis infection.
    Zanatta JM; Acuña SM; de Souza Angelo Y; de Almeida Bento C; Peron JPS; Stolf BS; Muxel SM
    PLoS One; 2023; 18(3):e0283696. PubMed ID: 37000792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.