These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 27016336)
1. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing. van Rossum HM; Kozak BU; Pronk JT; van Maris AJA Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336 [TBL] [Abstract][Full Text] [Related]
2. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J; Da Silva NA Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250 [TBL] [Abstract][Full Text] [Related]
3. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454 [TBL] [Abstract][Full Text] [Related]
4. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Kozak BU; van Rossum HM; Benjamin KR; Wu L; Daran JM; Pronk JT; van Maris AJ Metab Eng; 2014 Jan; 21():46-59. PubMed ID: 24269999 [TBL] [Abstract][Full Text] [Related]
5. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Lian J; Si T; Nair NU; Zhao H Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351 [TBL] [Abstract][Full Text] [Related]
6. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499 [TBL] [Abstract][Full Text] [Related]
7. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Rodriguez S; Denby CM; Van Vu T; Baidoo EE; Wang G; Keasling JD Microb Cell Fact; 2016 Mar; 15():48. PubMed ID: 26939608 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production. Gruchattka E; Kayser O PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782 [TBL] [Abstract][Full Text] [Related]
9. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering. Lian J; Zhao H ACS Synth Biol; 2016 Jul; 5(7):689-97. PubMed ID: 26991359 [TBL] [Abstract][Full Text] [Related]
10. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. Zhang Q; Zeng W; Xu S; Zhou J Bioresour Technol; 2021 Dec; 342():125978. PubMed ID: 34598073 [TBL] [Abstract][Full Text] [Related]
11. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Shiba Y; Paradise EM; Kirby J; Ro DK; Keasling JD Metab Eng; 2007 Mar; 9(2):160-8. PubMed ID: 17196416 [TBL] [Abstract][Full Text] [Related]
12. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Zhang Y; Su M; Qin N; Nielsen J; Liu Z Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960 [TBL] [Abstract][Full Text] [Related]
13. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103 [TBL] [Abstract][Full Text] [Related]
14. Production of octanoic acid in Saccharomyces cerevisiae: Investigation of new precursor supply engineering strategies and intrinsic limitations. Wernig F; Baumann L; Boles E; Oreb M Biotechnol Bioeng; 2021 Aug; 118(8):3046-3057. PubMed ID: 34003487 [TBL] [Abstract][Full Text] [Related]
15. Engineering a Balanced Acetyl Coenzyme A Metabolism in Su B; Lai P; Yang F; Li A; Deng MR; Zhu H J Agric Food Chem; 2022 Apr; 70(13):4019-4029. PubMed ID: 35319878 [No Abstract] [Full Text] [Related]
16. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae. Song JY; Park JS; Kang CD; Cho HY; Yang D; Lee S; Cho KM Metab Eng; 2016 May; 35():38-45. PubMed ID: 26384570 [TBL] [Abstract][Full Text] [Related]
17. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. Chen Y; Siewers V; Nielsen J PLoS One; 2012; 7(8):e42475. PubMed ID: 22876324 [TBL] [Abstract][Full Text] [Related]
18. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. van Rossum HM; Kozak BU; Niemeijer MS; Duine HJ; Luttik MA; Boer VM; Kötter P; Daran JM; van Maris AJ; Pronk JT FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26895788 [TBL] [Abstract][Full Text] [Related]
19. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
20. Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement. Wu J; Zhang X; Zhou P; Huang J; Xia X; Li W; Zhou Z; Chen Y; Liu Y; Dong M Metab Eng; 2017 Nov; 44():313-324. PubMed ID: 29122703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]