BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27016393)

  • 21. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.
    Saadi M; Karkhah A; Nouri HR
    Infect Genet Evol; 2017 Jul; 51():227-234. PubMed ID: 28411163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction and analysis of promiscuous T cell-epitopes derived from the vaccine candidate antigens of Leishmania donovani binding to MHC class-II alleles using in silico approach.
    Kashyap M; Jaiswal V; Farooq U
    Infect Genet Evol; 2017 Sep; 53():107-115. PubMed ID: 28549876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection.
    Kumar Pandey R; Ojha R; Mishra A; Kumar Prajapati V
    J Cell Biochem; 2018 Sep; 119(9):7631-7642. PubMed ID: 29900580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunoinformatics Approach for Epitope-Based Peptide Vaccine Design and Active Site Prediction against Polyprotein of Emerging Oropouche Virus.
    Adhikari UK; Tayebi M; Rahman MM
    J Immunol Res; 2018; 2018():6718083. PubMed ID: 30402510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing of Epitope-Focused Vaccine by Targeting E6 and E7 Conserved Protein Sequences: An Immuno-Informatics Approach in Human Papillomavirus 58 Isolates.
    Sabah SN; Gazi MA; Sthity RA; Husain AB; Quyyum SA; Rahman M; Islam MR
    Interdiscip Sci; 2018 Jun; 10(2):251-260. PubMed ID: 27640170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection.
    Pandey RK; Ojha R; Aathmanathan VS; Krishnan M; Prajapati VK
    Vaccine; 2018 Apr; 36(17):2262-2272. PubMed ID: 29571972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shotgun Immunoproteomic Approach for the Discovery of Linear B-Cell Epitopes in Biothreat Agents
    D'haeseleer P; Collette NM; Lao V; Segelke BW; Branda SS; Franco M
    Front Immunol; 2021; 12():716676. PubMed ID: 34659206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deciphering the Structural Enigma of HLA Class-II Binding Peptides for Enhanced Immunoinformatics-based Prediction of Vaccine Epitopes.
    Chatterjee D; Priyadarshini P; Das DK; Mushtaq K; Singh B; Agrewala JN
    J Proteome Res; 2020 Nov; 19(11):4655-4669. PubMed ID: 33103906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein.
    Alam A; Ali S; Ahamad S; Malik MZ; Ishrat R
    Immunology; 2016 Dec; 149(4):386-399. PubMed ID: 27485738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine.
    Negahdaripour M; Nezafat N; Eslami M; Ghoshoon MB; Shoolian E; Najafipour S; Morowvat MH; Dehshahri A; Erfani N; Ghasemi Y
    Infect Genet Evol; 2018 Mar; 58():96-109. PubMed ID: 29253673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In silico identification of immunodominant B-cell and T-cell epitopes of non-structural proteins of Usutu Virus.
    Satyam R; Janahi EM; Bhardwaj T; Somvanshi P; Haque S; Najm MZ
    Microb Pathog; 2018 Dec; 125():129-143. PubMed ID: 30217517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fundamentals and Methods for T- and B-Cell Epitope Prediction.
    Sanchez-Trincado JL; Gomez-Perosanz M; Reche PA
    J Immunol Res; 2017; 2017():2680160. PubMed ID: 29445754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Silico Tools and Databases for Designing Peptide-Based Vaccine and Drugs.
    Usmani SS; Kumar R; Bhalla S; Kumar V; Raghava GPS
    Adv Protein Chem Struct Biol; 2018; 112():221-263. PubMed ID: 29680238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools.
    De Groot AS; Moise L; Terry F; Gutierrez AH; Hindocha P; Richard G; Hoft DF; Ross TM; Noe AR; Takahashi Y; Kotraiah V; Silk SE; Nielsen CM; Minassian AM; Ashfield R; Ardito M; Draper SJ; Martin WD
    Front Immunol; 2020; 11():442. PubMed ID: 32318055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague.
    Zvi A; Rotem S; Zauberman A; Elia U; Aftalion M; Bar-Haim E; Mamroud E; Cohen O
    Vaccine; 2017 Oct; 35(44):5995-6006. PubMed ID: 28606812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches.
    Negahdaripour M; Eslami M; Nezafat N; Hajighahramani N; Ghoshoon MB; Shoolian E; Dehshahri A; Erfani N; Morowvat MH; Ghasemi Y
    Infect Genet Evol; 2017 Oct; 54():402-416. PubMed ID: 28780192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunoinformatics comes of age.
    Korber B; LaBute M; Yusim K
    PLoS Comput Biol; 2006 Jun; 2(6):e71. PubMed ID: 16846250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Not all T cell epitopes are equally desired: a review of in silico tools for the prediction of cytokine-inducing potential of T-cell epitopes.
    Dhanda SK; Malviya J; Gupta S
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An overview of
    Kardani K; Bolhassani A; Namvar A
    Expert Rev Vaccines; 2020 Aug; 19(8):699-726. PubMed ID: 32648830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunoinformatics:
    Bahrami AA; Payandeh Z; Khalili S; Zakeri A; Bandehpour M
    Int Rev Immunol; 2019; 38(6):307-322. PubMed ID: 31478759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.