BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27016649)

  • 1. Evolution of carbonic anhydrase in C4 plants.
    Ludwig M
    Curr Opin Plant Biol; 2016 Jun; 31():16-22. PubMed ID: 27016649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonic anhydrase and the molecular evolution of C4 photosynthesis.
    Ludwig M
    Plant Cell Environ; 2012 Jan; 35(1):22-37. PubMed ID: 21631531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C4 carbonic anhydrase in Flaveria.
    Tanz SK; Tetu SG; Vella NG; Ludwig M
    Plant Physiol; 2009 Jul; 150(3):1515-29. PubMed ID: 19448040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis.
    Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2006 May; 141(1):232-42. PubMed ID: 16543411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular evolution of β-carbonic anhydrase in Flaveria.
    Ludwig M
    J Exp Bot; 2011 May; 62(9):3071-81. PubMed ID: 21406474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Flaveria bidentis beta-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns.
    Tetu SG; Tanz SK; Vella N; Burnell JN; Ludwig M
    Plant Physiol; 2007 Jul; 144(3):1316-27. PubMed ID: 17496111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of the Chloroplast Transit Peptide from an Ancestral C
    Clayton H; Saladié M; Rolland V; Sharwood R; Macfarlane T; Ludwig M
    Plant Physiol; 2017 Mar; 173(3):1648-1658. PubMed ID: 28153918
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic and anion inhibition studies of a β-carbonic anhydrase (FbiCA 1) from the C4 plant Flaveria bidentis.
    Monti SM; De Simone G; Dathan NA; Ludwig M; Vullo D; Scozzafava A; Capasso C; Supuran CT
    Bioorg Med Chem Lett; 2013 Mar; 23(6):1626-30. PubMed ID: 23414801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO
    Kolbe AR; Studer AJ; Cornejo OE; Cousins AB
    BMC Genomics; 2019 Feb; 20(1):138. PubMed ID: 30767781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of leaf carbonic anhydrase activity eliminates the C
    DiMario RJ; Giuliani R; Ubierna N; Slack AD; Cousins AB; Studer AJ
    Plant Cell Environ; 2022 May; 45(5):1382-1397. PubMed ID: 35233800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of cytoplasmic C
    Kandoi D; Ruhil K; Govindjee G; Tripathy BC
    Plant Biotechnol J; 2022 Aug; 20(8):1518-1532. PubMed ID: 35467074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of the chloroplastic β-carbonic anhydrase from Flaveria bidentis (L.) "Kuntze".
    Dathan NA; Alterio V; Troiano E; Vullo D; Ludwig M; De Simone G; Supuran CT; Monti SM
    J Enzyme Inhib Med Chem; 2014 Aug; 29(4):500-4. PubMed ID: 23895630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transgenic approach to understanding the influence of carbonic anhydrase on C18OO discrimination during C4 photosynthesis.
    Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2006 Oct; 142(2):662-72. PubMed ID: 16905667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular comparison of carbonic anhydrase from Flaveria species demonstrating different photosynthetic pathways.
    Ludwig M; Burnell JN
    Plant Mol Biol; 1995 Oct; 29(2):353-65. PubMed ID: 7579185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesophyll conductance in Zea mays responds transiently to CO
    Kolbe AR; Cousins AB
    New Phytol; 2018 Mar; 217(4):1463-1474. PubMed ID: 29220090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MEM1-like motif directs mesophyll cell-specific expression of the gene encoding the C4 carbonic anhydrase in Flaveria.
    Gowik U; Schulze S; Saladié M; Rolland V; Tanz SK; Westhoff P; Ludwig M
    J Exp Bot; 2017 Jan; 68(2):311-320. PubMed ID: 28040798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance.
    Crawford JD; Cousins AB
    J Exp Bot; 2022 Jan; 73(3):927-938. PubMed ID: 34698863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.
    Stata M; Sage TL; Hoffmann N; Covshoff S; Ka-Shu Wong G; Sage RF
    Plant Cell Physiol; 2016 May; 57(5):904-18. PubMed ID: 26985020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.
    Retta M; Ho QT; Yin X; Verboven P; Berghuijs HNC; Struik PC; Nicolaï BM
    Plant Sci; 2016 May; 246():37-51. PubMed ID: 26993234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible CO2 concentrating mechanism in chloroplasts of C3 plants. Role of carbonic anhydrase.
    Fridlyand LE; Kaler VL
    Gen Physiol Biophys; 1987 Dec; 6(6):617-36. PubMed ID: 3127271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.