These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 27016807)
1. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation. Shin HM; McKone TE; Bennett DH Chemosphere; 2016 Jun; 153():130-7. PubMed ID: 27016807 [TBL] [Abstract][Full Text] [Related]
2. Model framework for integrating multiple exposure pathways to chemicals in household cleaning products. Shin HM; McKone TE; Bennett DH Indoor Air; 2017 Jul; 27(4):829-839. PubMed ID: 27859724 [TBL] [Abstract][Full Text] [Related]
3. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential. Dinh TV; Kim SY; Son YS; Choi IY; Park SR; Sunwoo Y; Kim JC Environ Sci Pollut Res Int; 2015 Jun; 22(12):9345-55. PubMed ID: 25601614 [TBL] [Abstract][Full Text] [Related]
4. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds. Võ UU; Morris MP J Air Waste Manag Assoc; 2014 Jun; 64(6):661-9. PubMed ID: 25039200 [TBL] [Abstract][Full Text] [Related]
5. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. Wu W; Zhao B; Wang S; Hao J J Environ Sci (China); 2017 Mar; 53():224-237. PubMed ID: 28372747 [TBL] [Abstract][Full Text] [Related]
6. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China. Yan Y; Peng L; Li R; Li Y; Li L; Bai H Environ Pollut; 2017 Apr; 223():295-304. PubMed ID: 28131475 [TBL] [Abstract][Full Text] [Related]
7. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. Singer BC; Destaillats H; Hodgson AT; Nazaroff WW Indoor Air; 2006 Jun; 16(3):179-91. PubMed ID: 16683937 [TBL] [Abstract][Full Text] [Related]
8. Source apportionment of ambient volatile organic compounds in Beijing. Song Y; Shao M; Liu Y; Lu S; Kuster W; Goldan P; Xie S Environ Sci Technol; 2007 Jun; 41(12):4348-53. PubMed ID: 17626435 [TBL] [Abstract][Full Text] [Related]
9. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil. Galvão ES; Santos JM; Reis Junior NC; Stuetz RM Environ Technol; 2016 Sep; 37(17):2133-48. PubMed ID: 26776458 [TBL] [Abstract][Full Text] [Related]
10. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Wang H; Xiang Z; Wang L; Jing S; Lou S; Tao S; Liu J; Yu M; Li L; Lin L; Chen Y; Wiedensohler A; Chen C Sci Total Environ; 2018 Apr; 621():1300-1309. PubMed ID: 29054635 [TBL] [Abstract][Full Text] [Related]
11. Personal and ambient exposures to air toxics in Camden, New Jersey. Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J; Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188 [TBL] [Abstract][Full Text] [Related]
12. Using a Vegetative Environmental Buffer to Reduce the Concentrations of Volatile Organic Compounds in Poultry-House Atmospheric Emissions. Yao Q; Torrents A; Li H; Buser MD; McConnell LL; Downey PM; Hapeman CJ J Agric Food Chem; 2018 Aug; 66(31):8231-8236. PubMed ID: 29957951 [TBL] [Abstract][Full Text] [Related]
13. Estimation of Anthropogenic VOCs Emission Based on Volatile Chemical Products: A Canadian Perspective. Asif Z; Chen Z; Haghighat F; Nasiri F; Dong J Environ Manage; 2023 Apr; 71(4):685-703. PubMed ID: 36416924 [TBL] [Abstract][Full Text] [Related]
14. Emission factors, ozone and secondary organic aerosol formation potential of volatile organic compounds emitted from industrial biomass boilers. Geng C; Yang W; Sun X; Wang X; Bai Z; Zhang X J Environ Sci (China); 2019 Sep; 83():64-72. PubMed ID: 31221388 [TBL] [Abstract][Full Text] [Related]
15. Removing volatile organic compounds in cooking fume by nano-sized TiO Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755 [TBL] [Abstract][Full Text] [Related]
16. Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: risk assessment of acute airway effects. Nørgaard AW; Kudal JD; Kofoed-Sørensen V; Koponen IK; Wolkoff P Environ Int; 2014 Jul; 68():209-18. PubMed ID: 24769411 [TBL] [Abstract][Full Text] [Related]
17. Highly Resolved Composition during Diesel Evaporation with Modeled Ozone and Secondary Aerosol Formation: Insights into Pollutant Formation from Evaporative Intermediate Volatility Organic Compound Sources. Drozd GT; Weber RJ; Goldstein AH Environ Sci Technol; 2021 May; 55(9):5742-5751. PubMed ID: 33861084 [TBL] [Abstract][Full Text] [Related]
18. [Correlation Analysis Between Characteristics of VOCs and Ozone Formation Potential in Summer in Nanjing Urban District]. Yang XX; Tang LL; Zhang YJ; Mu YF; Wang M; Chen WT; Zhou HC; Hua Y; Jiang RX Huan Jing Ke Xue; 2016 Feb; 37(2):443-51. PubMed ID: 27363129 [TBL] [Abstract][Full Text] [Related]