These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Neculita CM; Zagury GJ; Bussière B J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207 [TBL] [Abstract][Full Text] [Related]
8. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. Yan S; Cheng KY; Morris C; Douglas G; Ginige MP; Zheng G; Zhou L; Kaksonen AH Chemosphere; 2020 Aug; 252():126570. PubMed ID: 32443266 [TBL] [Abstract][Full Text] [Related]
9. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Johnson DB; Hallberg KB Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629 [TBL] [Abstract][Full Text] [Related]
10. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal. Song H; Yim GJ; Ji SW; Neculita CM; Hwang T J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144 [TBL] [Abstract][Full Text] [Related]
11. Sulfate and metals removal from acid mine drainage in a horizontal anaerobic immobilized biomass (HAIB) reactor. Braga JK; de Melo Júnior OM; Rodriguez RP; Sancinetti GP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(12):1436-1449. PubMed ID: 32812506 [TBL] [Abstract][Full Text] [Related]
12. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors. Neculita CM; Vigneault B; Zagury GJ Environ Toxicol Chem; 2008 Aug; 27(8):1659-67. PubMed ID: 18290688 [TBL] [Abstract][Full Text] [Related]
14. Salinity and low temperature effects on the performance of column biochemical reactors for the treatment of acidic and neutral mine drainage. Ben Ali HE; Neculita CM; Molson JW; Maqsoud A; Zagury GJ Chemosphere; 2020 Mar; 243():125303. PubMed ID: 31760288 [TBL] [Abstract][Full Text] [Related]
15. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Liu Z; Li L; Li Z; Tian X Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226 [TBL] [Abstract][Full Text] [Related]
16. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Kaksonen AH; Franzmann PD; Puhakka JA Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513 [TBL] [Abstract][Full Text] [Related]
17. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions. Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816 [TBL] [Abstract][Full Text] [Related]
18. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. Wang H; Zhang M; Dong P; Xue J; Liu L Chemosphere; 2024 Feb; 349():140789. PubMed ID: 38013025 [TBL] [Abstract][Full Text] [Related]
19. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
20. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor. Vieira BF; Couto PT; Sancinetti GP; Klein B; van Zyl D; Rodriguez RP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):793-7. PubMed ID: 27222283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]