BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27017300)

  • 1. Modeling the mechanical properties of liver fibrosis in rats.
    Zhu Y; Chen X; Zhang X; Chen S; Shen Y; Song L
    J Biomech; 2016 Jun; 49(9):1461-1467. PubMed ID: 27017300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli.
    Zhu Y; Zheng Y; Shen YY; Chen X; Zhang XY; Lin HM; Guo YR; Wang TF; Chen SP
    J Zhejiang Univ Sci B; 2014 Apr; 15(4):375-81. PubMed ID: 24711358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of liver fibrosis in rats with shearwave dispersion ultrasound vibrometry: comparison with dynamic mechanical analysis.
    Zhu Y; Zhang X; Zheng Y; Chen X; Shen Y; Lin H; Guo Y; Wang T; Chen S
    Med Eng Phys; 2014 Nov; 36(11):1401-7. PubMed ID: 24835187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model.
    Chen X; Shen Y; Zheng Y; Lin H; Guo Y; Zhu Y; Zhang X; Wang T; Chen S
    Ultrasound Med Biol; 2013 Nov; 39(11):2091-102. PubMed ID: 23993170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis.
    Reiter R; Freise C; Jöhrens K; Kamphues C; Seehofer D; Stockmann M; Somasundaram R; Asbach P; Braun J; Samani A; Sack I
    J Biomech; 2014 May; 47(7):1665-74. PubMed ID: 24657103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation for the interconversion between generalized Kelvin-Voigt and Maxwell models using human skin tissues.
    Kim JH; Yang D; Park S
    J Biomech; 2024 Jan; 162():111908. PubMed ID: 38142667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound.
    Yeh CL; Chen BR; Tseng LY; Jao P; Su TH; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1295-307. PubMed ID: 26168176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.
    Bentil SA; Dupaix RB
    J Mech Behav Biomed Mater; 2014 Feb; 30():83-90. PubMed ID: 24269943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing viscoelasticity of shear wave propagation in cervical tissue by multiscale computational simulation.
    Peralta L; Rus G; Bochud N; Molina FS
    J Biomech; 2015 Jun; 48(9):1549-56. PubMed ID: 25700611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.
    Xie P; Wang M; Guo Y; Wen H; Chen X; Chen S; Lin H
    Technol Health Care; 2018; 26(S1):449-458. PubMed ID: 29758968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic properties of normal rat liver measured by ultrasound elastography: Comparison with oscillatory rheometry.
    Lin H; Shen Y; Chen X; Zhu Y; Zheng Y; Zhang X; Guo Y; Wang T; Chen S
    Biorheology; 2016; 53(5-6):193-207. PubMed ID: 27858670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic viscoelastic parameters measured with MR elastography: correlations with quantitative analysis of liver fibrosis in the rat.
    Salameh N; Peeters F; Sinkus R; Abarca-Quinones J; Annet L; Ter Beek LC; Leclercq I; Van Beers BE
    J Magn Reson Imaging; 2007 Oct; 26(4):956-62. PubMed ID: 17896384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How preservation time changes the linear viscoelastic properties of porcine liver.
    Wex C; Stoll A; Fröhlich M; Arndt S; Lippert H
    Biorheology; 2013; 50(3-4):115-31. PubMed ID: 23863278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic mechanical analysis to assess viscoelasticity of liver tissue in a rat model of nonalcoholic fatty liver disease.
    Zhang X; Gao X; Zhang P; Guo Y; Lin H; Diao X; Liu Y; Dong C; Hu Y; Chen S; Chen X
    Med Eng Phys; 2017 Jun; 44():79-86. PubMed ID: 28284571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity.
    Klatt D; Hamhaber U; Asbach P; Braun J; Sack I
    Phys Med Biol; 2007 Dec; 52(24):7281-94. PubMed ID: 18065839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear viscoelasticity of suspensions of biological cells with viscoelastic membrane II.
    Abe K; Takano Y; Sakanishi A
    Biorheology; 1986; 23(1):75-87. PubMed ID: 3719093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of liver viscosity behavior as a function of multifrequency magnetic resonance elastography (MMRE) postprocessing.
    Leclerc GE; Charleux F; Robert L; Ho Ba Tho MC; Rhein C; Latrive JP; Bensamoun SF
    J Magn Reson Imaging; 2013 Aug; 38(2):422-8. PubMed ID: 23293060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography.
    Zhao J; Zhai F; Cheng J; He Q; Luo J; Yang X; Shao J; Xing H
    PLoS One; 2017; 12(1):e0170073. PubMed ID: 28107385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-minimum phase viscoelastic properties of soft biological tissues.
    Kobayashi Y; Okamura N; Tsukune M; Fujie MG; Tanaka M
    J Mech Behav Biomed Mater; 2020 Oct; 110():103795. PubMed ID: 32957173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear wave dispersion ultrasound vibrometry based on a different mechanical model for soft tissue characterization.
    Chen K; Yao A; Zheng EE; Lin J; Zheng Y
    J Ultrasound Med; 2012 Dec; 31(12):2001-11. PubMed ID: 23197554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.